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AN AUTOMATON ANALYSIS OF THE LEARNING OF A MINIATURE
SYSTEM OF JAPANESE

.Kenneth Norman Wekier

Stanford University
Stanford, California 94305

I. Introduction

The purpose of this study is to do an automata-theoretic’and- experimental
investigation of the learning of the syntax and: semantics of a second natural
language. Mosﬁ'studies in the psychological literature (e.g., Braine, 1963;
Epstein, 1962) that have tried to deal experimentally with the learning of a
small segment of language have analyzed only artificial languages.  Crothers
and Suppes (1967, Chap. 6) analyzed the learning of some Russian syntax by
American college students, making predictions based on alternative concep-
tions of generative grammar, but did not obtain significant differences
based on these conceptions.

The main thrust of this work is to ask what kind of an automaton ‘can a
person become? - Suppes (1968) showed that there is a sense 'in which ‘the: be-
havior of any:finite automaton caﬁ be approached in the ‘limit by a stimulus
sampling model. However, the thrust of our work was not to construct a -
model to capture the trial-to-trial changes in learning, but rather to see
what kind of automaton a subject could be at a given point of time, that is,
what kind ofiahtomaton the - learner could use to structure information. We
considered various kinds of automata, made predictions from them (and perhaps
some auxilliary learning assumptions), and then;tested-theée pfedictions
against data from ‘a learning experiment to distinguish -between: the: models.

Another question we wanted to consider is:the role of semantics in

language learning. There are two - questions here. ' First, what effect
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does the introduction of semantiéé hgveypn‘syntax larning? Miller and
Norman (1964) suggested that perhaés éemanticé has no direct role in
syntax learning, that is, it gives no information to the subject which
he uses to learn the syntax. Rather, semantics may have only a motivating

..role.- Minsky (1968, p..20), on the other hand, conceiyedvqﬁ-semappics
playing a very:impprtgpt part in the understagd;ngtpf syntax; namely, hg

bclaimed that semantics restricts the range of syntactic structures that .
gz sentence can have. This latter view suggests that semantics mgyvhavgl
the 'same effect . on syntax learning. That is, thg introduction qﬁ
semantics may aid syntax learning by restricting the possiblg syntggtic.
structures.

A secondary question we wanted to consider that is relevant to..
semantics is how the semantics itself is learned. We wanted to look at .
a simple semantic: system to see if we could say agything precise about

- semantics -learning. This was necessary, because almost no work has beeg
done on semantics learning. A recent book {(Minsky, 1968) contains.a
ﬁumber of articles which describe various attempts to introduce ggmantics
into computers.’ But very little is said about how a computer might learn
these systems.

The -above discussions put a number of requirements. on our choice of
experimental materials. . The material. had, to

{a) be drawn from natural language, . - e

(b) have a simple automata structure that we gould specify, and -.

{c) have a simple semantics .that -we gould specify..

'These reQuirements were met by -the material we chose, which is.a. i

sub-domain of the set of arithmetic sentences in Japanese. Spoken

O -2 -
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arithmetic in -Japanese has a simple- syntax that we couldnspecifyu‘.TheLa
semantics of the system is simply'the semantics of arithmetic.

" To give some idea of what we'mean‘by the . syntax ‘and:semantics’of
the 'small system.of Japanese we studied, let us give an:example-in English.
Consider'‘the two sentences of English:spoken-arithmetic: -:--:

1. ‘What is two plus three?

-2. “What '‘plus two.is three?
First note that the syntax of.the two sentences is different. - On.a.
simple level,” although the words in both sentences are the same, the-
order of the words 'is different. But this is not-the only difference
between the two sentences; the meanings of the sentences.also-diffexr.
We itook as- the meaning (or semantics) of :such a sentence- its correct .. .-
answer in arithmetic. Thus, denoting meaning by A, we have A (Sentence:.
1) =5 and A (Sentence2) =-1. “Clearly, the meaning of:these‘sentences.
does not :depend - only on.what words ‘they contain, for :sentence.l .and -.:

sentence. 2 :contain the same:words'yet have ‘different meanings.. :This-of::

-course’is exactly the same state of affairs as in: natural language:in

general, e.g., 'John'loves Mary" is (alas) different in meaning from
"Mary loves John.": "

To:what extent are-we justified in taking ‘the semantics of ar o ..
question:to:be its correct:answer? The most:serious study of semantics..
has ‘been:'in" logic, where.models which-allow one to determine the:truth of
a sentence are studied. The sentences-considered are generally propositions,
not questions+ -However,-we: can consider a question. to:be derived:by a

transformation:ifrom a:proposition with:.a:variable:in. it,:and we:.can—-then

-say that the 'meaning of:a-guestion is that word or:phrase:(in:.cur:case: ..

-3 -



number) which makes the underlying proéositidn_tfueawith respect to the
semantic model. . . - : N R N LR NP s
" These consideratiohszare discussed more precisely in.Section III.
Since they ‘are not,central-to the major reason for:our formulation.of .. -
the experiment, we will not discuss:them further. Before:.we turn to.a -
brief description of the experiment we want -to point out -the.obvious
fact that the experiment deals with only a very small, limited-system
of language. While :our ultimate goal,vof course, is to understand the : .
course of -language-acquisition in 'general, .we have chosen to work with
a small experiment so that we can formulate precise -theories which are-..
also .precisely test;ble. The rich nature of spoken language in ‘even:a .
young child makes precise testing of, for.example, automata. models:very,:
difficult if they are .to ‘apply :tothe whole range of language. . For..
example, one of :thé main points of our-study is the:.comparison of - two .
automata, both.of which predict learning.at asymptote. : Discrimination.;
between theaautomatafiswpossible by comparing-details of learning.: If. .
we -were:to- apply:the same procedure. to .a large:range.of natural-language,
we would first-have to-write:automata to 'describe:.this language. . Wes:r.. .
prefer to leave thi; task as an exercise for the linguists.: Then:we:. .
would have to precisely ‘observe the course.of language:acquisition.
- Although .a number-of;investigators;have;studied,.say; child::language:at..
‘a fewigiven points of time; very:little:of.a systematic nature has-been -
- said about.the course:of:development..over time: B L Y S TR
~For: reasons of :the:above sort.we settled.on . a simple experiment as.
an appropriate -way to.study.some. aspects of language learning:. ..The. .. -:

materials learned have.properties which-are sufficiently similar to.those

IR T



‘demanded by linguistic theory that we call them a "miniature,linguistic:

system." In-the experiment :subjects learned syntax by being .exposed to.

..sentences of this system. - We did not teach them .any rules:. There seems

to ‘be:general-agreement that rules are not directly taught:to.children.. .
learning a- first:-language. Also, it is commonly said that the.best way.
to learn: a,second language is to go to a country where that language is.
spoken and-learn it, -not by learning rules, but by being exposed.to. the:
language.. For-these reasons we did not. present .rules .to:the. subjects.. -
In general, we.feel that-the experimentallsituation provides a reasonable
model. of some. {though certainly not all) of the conditions of language .-
learning.  .This.is especially true of the sentences that arée presented-

with:associated "meanings."

The Ezxperiment

sentences t1at contained two numbers and a varlable and the four

A complete descrlptlon of the experlmental method appeara in

Sectlon IV Here we glve only a brlef over-view. Before spe01fying

b

exactly the set of Japanese sentences used in our experiment I mlght

mentlon brlefly a pllot experlmentlln wh1ch we used a much broader ranée
of sentences and a dlfferent experlmentallmethod The naterlals were:
operations:” addltlon, subtractlon, multlpllcatlon and”diwisron;ﬁ*The}
hase sentences, in other words;.wereJor the form:;;v; 2 ;ké, éi;:;’=”d,
2 +3 = #, oius:the same sentences“with.the.otherhthree ooerations” |
instead ofraddition.v The 1ntegers 0 to 9 were used and only sentences
whose correct answer was.posltlve or zero. The sentences were‘the |
Japanese sentences derived transformationally from the above equatlons .
(see Sectlon III) "A subjecti annAnerlcanrcollege student- heard a 1arge

i
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number‘of 'these ‘sentences, that is, ‘he 'saw a-Japanese“speakér sayingcsthem
on television, and after each.sentencewsawhthefcorrectﬂan5werﬁap§earfone
the screéen. The‘subjectfsijob:was to:write“the correct:answer in.the:few
seconds provided betweén the. time he:heard theisentence:andthesanswer:::
wds presented.  To give an ‘example; using-English:instéad~ofiJapanese;:"
the speaker might say, ''what plus two-equals five?'::A few:seconds:z! .’
transpired; and the -digit 3 was flashed - on-the-/sc¢reen. : The-subject;:who
was told-the~correct-answer'waS~afdigitifrom'OAtOJS,;triedito write:'the’
vcorrect -answer- in-‘the:time:before.it appeared on the Screen. .The:nexti :
stimulus might be "what-is7 6 divided by.32": and the presented:<aniwersb
would bel"z."'uTheﬂonlbeapanese~thejsubjects;knew;beforeéthese»guinxg:i
sentences were started were the integers from 04t0x9;vwhiehftheyalearned

as paired associates.  The stimuli. were  spoken Japanese words and the

responses were: written numerals.

T TR NI £ O K R T R RN vkl

SubJects dld not 1earn in thls experlment.- After elght experlmental

sesalons of about 45 mlnutes each no subJect had yet 1earned, and it d1d
TS Bt R W Y S LS S P B B T O T BEI I P

not 1ook as 1f they wou]d. The proportion correct d1d go up over days,
i : IR EE R M IE‘_’-.’.-."Y,'. LA e P - [ e vt il
but ana’ysis of the results suggested that th1s was mostly because

R ST RS | RO PR S BN ST SRR UON R IS S AR F VRN SR ELE Sy NP VR (1
subJects were guesslng better, that 1s, the1r answers were- drawn from
the poss1b1e set of answers glven the four operatlons and the two 1ntegers

o i R s U I A BRI ETS U . b i P T
they heard. For example, w1th the two 1ntegers 2 and 3 in:a- sentence,‘the
only answers could beA5 i, o:>6 51nce{3 d1v1ded t}dzﬁis notban{;nteger,
and the SLbJects knew‘that‘thelanswershwere‘;ntegers.4 So:here the suhgects
1earned to guess 5 L or 6”on'a‘sentencelwh1ch eontained thehlntegers -
2 and 3. . . Lo P i sean o aatimre i ety

. o : T R A A TOT T S BRI . . ey Lot

Slnce the subJects d1d not learn the- structure on this experlment
U i : D B R i ]

there is 11tt1e 1nterest1ng to say about it, and I shall not d1scuss 1t

EKC

wll Toxt Provided by ERIC
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ih“ahy‘moréédétéil.w:The experiment ‘was ‘useful,  however, for we .saw how
to modify it to  obtain more interesting ‘results. 'First, it' seemed.:that
i“théfmaterial”was:too complex.."The sentences we used made up a .large
‘portionfof*théf(shbrt)'senténces obtaihed-byhourtgraﬁmariﬁ;Since;this;
" was too much, ‘it was decided that the material in the»maiﬂ experiﬁent¢
‘was’ to' bé limited to the use of .one operation, ‘addition. : Second, for:
the same ‘reasons, we ‘used only.the,integeré-from'o to 5. . :Third, .the ..
method of presentation was so.difficult that ‘the-.subjects: had no chance
to attend to the structure. A new method :was adopted which allowed the
subject to concentrate on one word at a time. . Fourth,. since the subjects
did not ‘learn, -and a number of: them complained that they could not tell
what the words were .(i.e., they :could not isegment), in"the newaexperiment
pretraining was given on. the ''function" words, i.e., :the non-numerical
words. This:wds not translation training, but it was enough to :allow.
the subjects ‘to identify the words:when they heard:them in sentences.:
‘~The :Japanese -sentences finally selected: contained only-phe A
addition: operation. Each’senfence'COntained"exaCtly two .number words .
and a variable. That is, they were the kind of sentence .whose meaning
was the answer.  ‘They were the Japanese:sentenczs whose base sentences
(see ‘Section III) were of the form :x.+ N.= N, N 4+ x =N, or: N + N.= x,
"where' N was an integer from:O to 5. In. Japanese these:sentences read,

respectively, '"ikutsu tasu N wa: N desuka," "N- tasu-ikutsu wa.N.desuka;"

“and "'N tasu’'N wa ikutsu.desuka," where we allowed' N to stand for: any
integer. -''Ikutsu" means "what.": "Tasu'-is Japanese for -i'add.’". :'"'wa"

is a post-position,. analagous syntactically t. English prepositions, .but

“occurs-‘after-a noun. "Desu" 'means:'is! and "ka" is a question-marker:

=7 -



 Thus,pa‘typicalgsentence‘our,subjectsymightpheapwwas,afIqhiztasu.;gutsu
wa san-desuka" ("ichi" is l.and "san".is 3), "one plusfﬁhat_isﬂthree?ﬂ
-: The experiment: was .carried out in four parts, one part taking,place
after the previous partwwés-completed; In:Part I, the subjects had pre-
training on the four function words, "ikutsu;"p?tasu,",”waf"wanda"desuka."
They had to write the first letter of: the: word .when they heard.the word
spoken by a Japanese:speaker on closed-circuit television. - Part. II ..
consisted of péired*associate training on the;Japanese integers: from 0O
to 5. ‘The speaker said an integer, the subject wrote a .digit,. and .then
‘the correct.anéWer-appeared. ) S P
Part I1I was the main.partgof-theiexperiment, for which:Parts I..:
and Il were necessary pretraining: i.Here the subject-.had -to learn the.;
syntax of the addition '‘sentences described-above.:;A-sentencéﬂwas
presented slowly. uThat‘is; there were:a few seconds: between. each.word
- in the -sentence. - Ini this time the;subject;wa53t0rwnite;what words he
thought'ggglg possibly appear:as the next ‘word.: .This procedure.was
chosen so as to~help:thevsubject'1earn”thensyntax ana,forcedghim{toapay
attention:to-the.sentence structure.:nlnwthe sentences chosen it was ..
always the: case that either. one:or two words could.have been:ithe next:
word. - (Subjects were told not to;distinguishwbetween:numbers,fbutdif;
-they thought .-a:number- could:be next to simﬁly write .N for number). . .The
first position in-all:sentences could-be.'ikutsu" orua:numerél.,yTpeow
second position was always.'tasu." .. The third position. could be "ikutsu"
or-a numeral, if:thewfifst position'was.a:numeral, ‘but if-the first . .:
position was-"ikutsa" .then the:third position:had to be:a:numeral. .In

the :third position we see for-:the:first. time the influence Qf;thevhistory

ERIC oo




-was repeated

of the sentence (i.e., preceding words).. The fourth wo?q”Qaqqtq_ge,Twaq

The fifth word had to be arnumerglu§fﬁan‘ﬁ;kutsu"»Qaqda;gggq¥ appeared.

Otherwise it had to be "ikutsu." Once again the influence of the past

history of the sentence is seen. The sixth and final word had to be

" n
desuka. . L
[T A civsergr st o riw

§ ‘Aﬁter thg sentence wgs“qukeq g%qwly igiﬁhig»qgggg?&‘iﬁ,wa§?§gggen
again, this time at a more normal rate. At this point W?f??ﬁs%qeﬁe%j
two groups of sgbqecﬁs.‘ ?hg sgpqnﬁ%qg grggp}(ggpup S) gpw;haqfﬁpe task
of answ§r;gg ﬁhe Qapanese quegﬁiqg_thgy.haq jQ§§Lhea§q:”;@hé{gggtgncg

so that the subjects would not have to remember the

*

semantics while concentrating on the syntax in the first part. After

the sentence was read for the segqu tipe,uype_subqups‘w;qtg-g:ggggﬁal
fgom 0 to 9'which was‘supposed;tqlbe thg»ansﬁer to,thgiggestiqgl_:ggter
the answer, a digit from 0 to 9, appeared visgglly.on_tyeite¥9y;$§9g_
screen,_the nextlsentengeAwas.preggpﬁﬁq, slowlyiﬁ;”n_

The otherrgroup of subjeqts_did_pot_have this:sgmgntig task{bﬁln

_Instead they had some other task, or none at all, depending on the sub-

group in which they were located. (All of these 9xperimeptal,detail§
are presented in Section IV. If they are not impo:pqnt”fqp_;hehprgsgnt
discussion they will be ignored until then;) For this non-semantic ()

group, no number appeared on the television screen.

The reason for running group S was to observe the effects of .

semantic practice on the learning of syntax. (Only group S. was needed

~to study semantics learning.) ihe_two hypotheses considered about the

effect of semantics on syntax learning appear. to make different pre- .

dictions here. If semantics acts as a motivator only, then we have no

- Q-
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‘"reaféfoﬁ"tg‘féxfié&Qéfdff'feréntial'}éff'éc.t'fsn'fhé”"six‘res;pbrix”s;és.= That is,

AR LS R LI S R e E N S :
Jgroup‘S should do better than group S on all responses in the syntax
‘Téarning task. If, ‘on the other hand, semantics helps syntax learning

bi“régtﬁiétiﬁé'tﬁé'ﬁoséiblé'étfuC£ures;“fﬁenwoﬁiy'fﬁgée féspéhééé:én”'

which the seméntics actually restricts the possibilities shouidsﬁéx'

caEenyn g BRSO re e R S T N Tt S S L TR ORI B
" 'helped. These considerations will be .discussed somewhat more completely

in Section ‘11T, which deals with the semantic model.
“Part IV'of the experiment was carried out 'as a ‘chéck on Part IIT.

P e TS T T T L e .

In this part 50 sertences were presented, half of them ''grammatical” (G)
- 1o 2 P IS I S R I P R

and half "ungrammatical" (U). G sentences were sentences of the form

presented in Part III. U sentences, with the exception of four sentences

R TR R S L Lo A T TS R A SR T il
“'which we do not discuss now, contained "ikutsu'" twice and ‘only one numeral.
| ‘only ,

S T ST ST T g Lt L S L - TR LA
‘The second "ikutsu" occiurred where one of the numerals would occur in a

G sentence.  Otherwise, the U sentences were just like the other
sentences. An example of & U sentence is "ikutsu tasud 1 wa ikutsu
desuka’.'" THELSenf%ﬂEéé'Wéfé'pféSéhfedc6ﬁé‘ét'avtihé;kéhﬁufﬁe éubjects

‘had a few seconds to write a 1 for grammatical or a O for ungrammatical.

e

After the COrrebtjénswer,'allbor’a 0,'5ﬁ5é5}26'6ﬁ tﬁé écfééﬁ; the next
seﬂtéhcéiWaétbreéehfédi

“' “ Part TV was & check of Part ITI in ﬁhé'fbllbwihg sese. . Orie of

the main things we -wanted to find out in Part III wis wﬁéﬁhéf'fhéﬂgﬁﬁaects
would;iééfh;thé:éyhtéx; in a sense to be defined later. :ffVSubjgcts

had learned in Part III, then they should ieéfn?Paft iv”qaiékiy;"éiﬁéé
the information needed in Part IV was a sub-set of the ififormation needed
in Part III. ' Spécifically, Subjects who had learned Part III should

Tearn Part IV more quickly than subjects who had not learmed Part III.

- 10 -



If the dlfference Ln learnlng was not 1arge, we mlght belleve that

subjects who h;d.;;tulearned Part III byvour deflnltlon had nevertheless

“learned much of the ‘stricture.’

:ZA:sumﬁary'of“%héwfﬁiéé'things"wé are looking at in this 'study is -
1.”~Mo§t:iﬁb3§taﬁfiy; syntax learning,”

"5, The influence of semantic practice on syntax learning,’ and

3. Briefly, Semantics learning.

- 11 -
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IX. . Automata ‘Theories for Syntax Responses

T T e s . [ s T ‘ ’
oy R I S 4 R L O AL SR A TS el - [RSTP RN VO TES S GRS T LT B SR 13 3
N S B R AR d b1

In this section I shall define variou§<kipds_pf»gytpmata fo,see how
CEMIL ORI SRR 5 5 (AT E A

toumake‘predictionsjfrom,them‘about"syntax,1earpingqin,the experiment.
H R I P O R S S IV S R O R R U T P

Definitions of automata will be needed in the course of the theoretical

ﬁdevelppment. . These definitions_are”given_wheye'needed,Wput almost no
R N g IR N R £ IR Rt PIRCRRRA I B 7 A I IO I et

discussion of them is given, since there are many adequate sources for
such discussion.

First, we need the definition of finite automata. . In an attempt to
keep notétion standardized in psychological applications of automata, I
éhall follow the notation of Suppes (1968), which is in essence that of
Rabin and Scott (1959). - However, the model of an automaton given there
is not quite what we need Lo model this experiment. The model is
appropriate in that it is a recognition device that decides what strings
are acceptable, but the only way it does this is to determine -whether the
string brings the mﬁchine to an appropriate final state. The final state
does seem to have psychological justification, relating to the end of a
sentence. However, people gnderstand sentences as they are spoken and,
in general, do not have to wait for the end of a sentence to know that
it is nonsense or extremely ungrammatical. Specifically, in our
experiment, subjects were called on to respond with the next possible
inputs after each input. We could define a process whereby they could
do this by projecting into the future and seeing what continuations of
the string bring the machine to a final state. However, this does not
seem at all to be a reasonable model;"especially when another one is

available.

ot (12 —-—
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The problem is that in the Rabin and Scott definition, the transition
function M is a function from the Cartésian product of the set of states
and set of inputs. So this transition must be defined for every state,
input pair. There is a state-diagram for‘a finite automaton that
describes our language in Qigure 1.  From each stéte_only a few inputs

are accepted. The other inputs could be defined as taking the States to

which they do not apply into a _collectlon Sﬁéteiﬁwhich,then‘cycles
back to itself with each 1nput and is not a member of the set of flnal

stateq,'ﬁq that no*suqh string will bégacceptedi But if the subject is

to make his responsé on the basis of what inputs can come next in the P

iy

automaton, there is nothing to prevent him from pickihg;thgqihﬁutéifﬁéf

o L

go to this "collection" state, unless he makes extensive calculations
about what can lead to a.final state. This seems unreasonable in the
limited amount of timé he’is given.

-A model does exist that captures the properties we want. This is
what Ginsburg (1962) calls an "incomplete l-automaton.'” We follow
Ginsburg's development, using as much as possible the notation of Rabin
and Scott. - Since the class of 1anguagés generated by incomplete l-automata
is equal to the class of languages generated by the-aufomata of Rabin and
Scott (Ginsburg, 1962, Lemma 4.7, P 131), we call our machine a finite
automaton. The form of definitions closely follows Suppes {1968).

DEFINITION: A structure ¥ = {a, I, M, s ,F) is a finite @eterministic)

SO,

automaton EI and only_ii

(1) A is a finite nonempty set (the set of states),

_13—
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Fig. 1. State-diagram for the finite aﬁtomaton"}.
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finite nonempty .set. (the alphabet,gz.inputs),ng»n»q»-

@ T s

im

(3) M: is a function from a subset.of the Cartesian product. -

Ax Z to A (Mis the transition table),

{4 sy .is in A (s

o - is is the initial state),

0

(5) F is a subset of A (F is the set of final states).

The only difference between this definition and that. of. Suppes is in (3),
where the domain-of M .is specified as;é sﬁbset,of.the_Cartesian product.
E*- is the set of finite sequencss {strings or tapgs) of elements of Z,
including the empty. ssquence .A_n',The function M .is. extended toa:

function from a subset: of 4 X I * to: A by the following:

. *® .
DEFINITION: Let 01,..., Uk ‘be-a string in % and let s .be in .A.
M(S’—Ul"'"’ Gk) ig‘said to exist if each sfate, si;=_s_:and
Si.1 = Mls;,0,) exists, for 1< k. -When M(s, 0y,..., O ). exists, it
is defined to be the state s .
e e R S |

%

DEFINITION: A string x of - z is accepted by o -if: and only if

+h

M(so,x) -exists-and is in: F. A string sccepted by . A .is a .sentence.of

u.

DEFINITION: The langusge T{u},.generated by )i is the set of all.

strings accepted by Y.

At this point I want to consider some  special definitions.that.
attempt to model what the subject had .-to do.in the.syntax learning task,
The subject'ﬁad to decide, according to the instructions, what.the next
.possible words could: ke, that is, what the next acceptable inputs were.
iIf we conceive of. the .subject as:a finite automaton, we can define a .

notion of response that captures the process of the subject's response.



DEFINITION: The response r of the finite automaton U is a function

from the set of states A to the set of subsets of inputs. 2Z “such that

for s € A,

r{s) = {c € T such that there is an s’ €a such’ that- M(s,0) = s'}.
In other words, given the state of the automaton, ri-is the set of possible
‘next inputs. -‘The motivation for defining "resﬁonse" is ‘that if a subject
in our experiment "became'a finite automaton and-his task was to write
the next possible inputs, he would do so based on his current state, i.e.,
produce the 'response."" Tc give an example, consider the finite aut- -

omaton ﬂ-. Figure' 1 shows that M(sO,N) =8 and’»M(so,I)-= s, and

1 2

that there is no-other input G such that M(so,c) exists. Therefore,
by the definition, r(so) = {N,I}. Likewise,_r(sl),= {?}1;and r(sio)'=V¢,
the empty set. The function r 1is computed in the same manner for thg
other states.

Instead of defining the finite automaton as a recognition device‘and
then constructing the "response'" of the automaton, ‘we might:note another
possible approach to modeling our experimént would be to define the
automaton as an output device, or a Moore machine. 'That is, each time::
the machine reached a state it yielded an output that depended_\onlyﬁény
the current state. For our purposes the output would play the'rola of
response in the current construction, and no special definition of;;Q;'
response would be needed: : ‘ '; SR

A problem with this approach is that an entirely new output Zunction
would have to be defined. Let O be the output functidn and theaut-":
omaton Y, a$ in Figure 1. Then the output alphabet would be defined '

PN
as 2 , where I = {N,I,T,D,W} and set, for example, O(So) = (N,I} and
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0(51).=:{T}" In other words, it is clear that we would set 0(s,). r(s)).
By adopting our_methqd wa'haveaagtgally d?fi?ed_?9;99t?9?r; ?heq?WPQrtaPt
point is that a natural method has been provided for finding the output
instead of arbitrarily assigning the appropriate values.

I now return to;our‘developmenta

DEFINITIQN . A language L is a sub-set. of Z An 1n1t1a1 segment .2z of

L is a string z € L such that there is a string w € (Z {A}) such
that  zw € L.

The elements of L have heen excludad from being initial segments,
because this is useful fhr akbé}ihehtaiypu;posea. For other purposes,
it might be*desirable to ‘include them. - Denote by QZ(L)%'the'set~of,a11‘
initial segments of @ L.

DEFINITION: The next-word functlon of L ‘_§ Elfunctlon n from Nﬁ(L)

to (2z {A}) such that if -w EH%(L) (1 e.,." lﬁ an initial __gment of

5 : *
L), then” niw) = {G € Z ‘such that there isa z€Z

such that woz G L}
__Ih bthé}'wdrdé, given an 1n1t1a1 strJng, n tells us what 1etters may’

come next. 'the that in the above definition "n(A) is theuset of initial
letters of L.

DEFINITION: Let % be an autematon and L be a 1anguage We say that

"9 responds cbrréctli‘zé':L if (léttihg"r‘ éé:the iesponée'éz ”m”, and

n’ be the néxt-woid fuhctioniéi-'L);

(1) r(sy) -'n),
'and for all x €. @4(L) - {A})
(2) ”M(SO,X)"exists and’ r(M(sO,x» ='n(x).
This définition explains what we mean by learning syntax. ~A subject who
learns the syhtax Wiil‘"rESpdhé correctly." That'is;'hé wiilﬁéiGeLtherg

appropriate next possible words.



E

Now, consider an adtomaton for the sample of Japanese arithmetic. -

" As mentioned in Section I,  we do not ‘have to consider sentences thst"

differ only in the numerals they use. We can assume that, die to our '™
instructions, the subject codes a numeral he hears as N. . At any rate;

the responses contain no individual numeral; only "N, and our thedry aims

to explain the responses. Using. the notation-of the first letter of a '

Japanese word to stand for:‘that word end“uSing--N to stand'for a7numere1,
there are exactly three sentences in our language, which we will call’ J.
J = {vaWID,NT;WND,ITNWND}.

A transition table: for a:finiteiautomaton.j}vasuch thatJ-Tﬁ%).= J- . is i

shown in Figure 2. This automaton has the state-diagram shown. in Figure 1.

(A, S M,s ,F) where A = {, 05 1S 10} E = {N,I T,W D} and

S
i}

F

{ 10} A 51mple calculatlon shows that )} responds correctly to J,

~and that 'P%}) J. Thepefqre,rlfiwe assume that our learner becpmegaal

O

finite automaton we would predict that in the 11m1t he w111 1earn the
syntax_of J in the sense that he will respond correctly to J. .
However, tﬂe 1ﬁ£e1t1;e feel of the automaton 2Lt is not qulte rlght.
The states do-not seem to.;ake psychologlcal sense..HEogﬁexe@plellafPeru
one input, ;L is in either s1 or 52 but sl éﬁd_'éé :cen;befh,.
accept T. Since in both sentences T appears at the samengime, some~
how the states that accept tpem‘shouldmbe relatedf“:in etﬁerléorde, if

an input werd appears in the same place in twp_diﬁferent sentences, it .

should show up in the state structure of the automaton. ' The next

-18 -
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i Fig.' 2. ‘Transition table for .the finite, . T
automaton . For simplicity, a

¢ state:is denoted i _ instead of ... -

‘ 55 as in the text. N



definition yields a kind of finite automaton that seems to have the
properties we want.

DEFINITION: An ordered-state finite automaton (OSA)éfgg'fiuité:autdmaton-

such that ‘for all i,j,k .if iM'(si,cr?J.)_'rarid-'-_,M('_s-iqu) exist, then

It follows from the definition that at égy given tim;fki.e., after a
given number of inputs) there ispbnly one state thatéén ordered-state
automaton can be in, no matter what the past historyig The ordered-
state automaton is of interest to us maiﬁly wheie th??e-are transitions
that are not defined. 'In an ordered-state autoﬁaton%ﬁif all transitions
are defined, that is, if wﬁ(s,q) exists for all sta;gs s and inputs
o, then clearly for any integer k either all string?ﬁbf length k are
accepted or none are. That is, whether the automatopuaccepts or rejects
a string depends only on its length. ‘ iﬁ

To us it makegga lot of intuitive sense to suppgée a subject
becomes a sequential zutomaton. The state of the gdt&ﬁaton is directly
linked to time. The subject can learn where T appears, in a sense,
by learning that it.always appears in second position. What sequential

automaton can behave like -J? 'None, 'as shown by ‘the following.

THEOREM: There ig‘gg ordered-state automaton. that responds correctly

to J.

Proof: Suppose YU is an OSA which responds correctly to J. Recall
I = {NTNWID,NTIWND,ITNWND}. Since U responds correctly to J, M(sO,I)
and M(sO,N) exist. Therefore, by the definition of an OSA,.M(SO,I) =

M(sO,N). Call this state s and set M(sl,T) = s_.. Therefore

1’ 2

M(sO,NT) = s and M(sO,IT) = s "Therefore (Letting n be the next-

9"
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word function of ‘J and-' r - be the response of W),

n(IT). . Therefore n(NT) = n(IT). -

r(sz)"= n(NT)" and'-r(sz)

‘Inspection of J ‘reveals that"

n(NT) = {N,I} and._ncli) :{N}l 1Thefe£o;e n(NT) # n(IT).
Therefore we have a coﬁtradic{ioh,xéﬁalthé tﬁé;rem is proved.

Since there is no ordered-state adtamatshlfhaf:resﬁonds cafrectly
to J, we can predict fha£.£f>thé:subje¢t bécoﬁes an GSAZIHé woﬁ’f‘iéh}n
the syntéx of J, tﬁét ié; he won*f réspond corréctly éf';éymﬁtgfég!Jih
fact, this was the first h&pothesis'we aééelbped about the éiﬁérfﬁeh?.

It is intéréstidg that we-cﬁn predicf the'subjécf Will not.léé}ﬁﬁ'
from'ésshmiﬁg fhat'he'beédmes an'drdered?stéfp“aﬁfoﬁatdn.indéﬁén&éhf&&
of'ahyiassumptions about the course of 1earniné;-that'is;'of'thé'tfiéi—
biitriéi'chdnges in the subject’é reéponses'df even ‘his automaton. fhe
prediction rests upon the way the subject structures'iﬂfdrmaiion. :An'
ordered-state automaton severely limits this structure. If-ﬁe:édd the
additional assumption that the automatdn.ié 1oop—free; ;t ié clear that
the 1angua§e éenérated by an OSA must be of.the form AIAé;;:A#'(where
AiGIZE) in the.lahgdage of.regular expreséions, or, in dtherlﬁords,:ﬁ
Cartesian product of éefs of'inﬁuté. .Of*éoursé; there is no sich
représentatioh for -J.

If fﬁé’éubjectligﬁorés'thé.past sequédce of words, except fo; iéfting
them tell him at what point of time the input ié, his respdnses Wililbe
siﬁply those words which can come at'thé next point of time fér'ééme'“

input string, and his sequence of responses will be NI,T,NI,W,NI,D
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an ordered-state automaton. . Indeed, this is the automaton.one would -.

expect to find in the subject's rasponses if he becomes: an OSA. - A state

r

diagram for such an automaton,}ﬁ, appears in Figure 3.

Although we hav§ shown ﬁhgt no ordere¢—state f;nitg automaﬁop
‘ rgsponds correqtly to Jl it is still possible that’in some sense.an
QSA might reqund corrgqtly to _J in the‘limit,‘with probabilitx
arbitrarily close to_ 1, so in practicg-we could nqt ;ule out suéh»a
machine. Tq investigate this possibility, we make therfollowing:

DEFINITION: The probabilistic response r of the finite automaton ﬂ

is a set of random variables r(s) for each state s of U, taking

%
values in 2 . The automaton, response-pair (ﬂqr), responds correctly

up to € to a language p (323 € > 0) if
(1) Prlr(sy) = n(A)) > 1 - ¢,
and for a11 x € ¥ - {A},

(2) M(so,x) exists and Pr(r(M(sO,x))

n(x)) >1 - €.

DEFINITION: Let (Ni,ri), i=1,2,..., be a sequence of pairs of

SN

finite automata and probabilistic responses for the automata.“!g_saj‘

the sequence can respond correctly with probability 1 to L if, for

all € > 0, there is an integer N (depending on €) such that (mN,rN) -

responds correctiy up to € to L.

In this last definition we could have made an even stronger condition,
namely, we could have required some kind of convergence, that is, in
some sense, later automata inrthe sequence get closer to responding -

correctly. This would be in line with the usual convergence to
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Fig. 3. State-diagram for an ordered-state finite automaton )/ .
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probability 'l definitions. But we have stayed with this weaker condition,
because as we shall see now, ordered-state automata cannot even meet the

weak condition.

THEOREM: There is no sequence A, r) of automaton, response pairs (Ni,ri)

where each Mi is an ordered-state automaton such that (%,r) can respond

correctly with probability 1 to J.

Proof: Suppose (%,r) is such a sequence. Pick € < % and let (mi,ri)
respond correctly up to € +to J. The proof is similar to that for
the deterministic theorem. For this automaton, response-pair, since the

automaton responds correctly to J, M(sO,NT) = s exists, and

2
n(NT)) > 1 - € > & .

, Pr(r(sz)
,'éince.'ﬂii—é§>%n“osé;:b&.fhe,séﬁeiérgudeﬁt.gé‘in;fhemlaétf%ﬁe;%éﬁ;:;
M(sO,IT) = Sé;‘énénfhﬁé - o
Pr(r(s,) = n(IT)) > 1 ~ ¢ > i,
But iﬁsbéction of ‘Jt reveals that .b |
n(NT) = {N,I} and n{IT) = {N} . Therefore,
Pr(r(sz) = {N,I}) > % and Pr(r(sz) = {N}) > % , which is a
contradiction, and the theorem is proved.
This last theorem is rather strong in regard to the capabilities of
ordered-state finite automata. No matter how we might try to approach
J with an OSA, changing both the automaton and the response distribution,
there is no chance of coming close to responding correctly to J.
If the subject does learn, though, that is, if he responds correctly
at asymptote, are we forced to conclude that he is a finite automaton of
the non-ordered-state type, such as %? Somehow we wou;d like to find

an automaton that preserved the ordered-state property while using the
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past appropriately. These properties can-be found:in an-appropriate push-
down store (PDS) automaton. (first called: so by Newell,: Shaw and. Simon,
1959). Two mathematical treatments,.which differ slightly, may' be found
in Chomsky (1963) and Ginsburg (1966). However,:we do:not need’ anything
like the full power’ of ‘the PDS automata. We'are:not introducing the PDS
to gpﬁaip.moré generative power, since the finite:automata are strong
enough in this respect; rather we introduce PDS;automata in order to

‘obtain different kinds of -structure. In particular, we will not need
the PDS ability to erase from memory:. What we have is the same structure
of a'special case of what Chomsky called aa"Eransducer,"“bqttwe’do not
consider the machine as a mapping’ from inputé into memory sﬁrings'as a
transducer- does. The;essentiglistructureais;ﬁhe;same,ibgcauSe neither
a transducer nor our machine a;;ows‘erasgres,xand thus, neither:allows
-past memory to'.be inspected by:the machine. :For:our: purposes we. only::
need one element in memory at any given time, aﬁd this'again is different
.from.a gerneral PDS. Our machine is also deterministic. “As. far:as'wet/
know, .an automaton exactly like ours has not been:defined in.the
literature. - As far as possible we will try to make cur:definition a.: -

- special :case. of Ginsburg's (1966, p.:59). 'This; however, is not completely
possible. because, ' for the:same reasons we gave for the finite automaton
definition, we want the transition function to be defined on only-a:
subset of the appxopriatefCartesian product, whereas Ginsburg-'defines::
the function on the-full set. -Nevertheless, these notions can be defined

~-:’'in-a manner. similar to that for finite autoﬁéta.

’ <A72,P7_M7 z

DEFINITION: -“A structure :% ,s ,F,e) is a -l-memory store

0’%o0

(1-MS) if and only if




(1) A+ is:'a nonempty finite set (states),-

~+(2) .Z -is a nonempty finite set (inputs),

(3) ' I is a nomempty finite-set {mgmqu;elements),n*

Im

(4) M is a function from a subset of 'A'X I X (TUfe}) to

~A-X>(TUfe}) (M is the transition table).such that .-

a) if. M(s,0,m) exists, then M(s,0,m) = (s/e): if-and
. - only if-'‘m = e .

b) -if M(s,0.:) exists fthen there:isno' m.€ T :such, that

M(s,0,m) . exists {(the deterministic condition), -

(5) =z, 1is an element of F(zo is the start push-down symbol), .-

(6) s, is-in. A(s

o isin o is the start.state),

(7) F is'a subset.of A (F is the set of final states),

(8) e is not‘igu~T (e»-i§~the empty memory. element).

Actually there is little difference between the foregoing definition. and
the usual PDS definition. What makes our machine a 'l-memory store" is
the manner in which it moves.: The way wescénceive of - the 1-MS .as moving
is the following. - The machine is in a state, has one memory element.at

that time, receives an . .input, and:as a result. of those three properties,

-, switches to another state;,; and changes the.memory element .to:another one.

In order to realize this process weudefine‘the-followingwfunction'-M/g
¥
from a subset of AX T XTI to aAxIT
*
DEFINITION: Let 0, ... 0  be a string in ¥, and let. s ‘in- A :and

m in T M'(s,Ol.;.ck,m) is said to exist if there is.a sequence of

, WwWhere sls= s, and g.sequence.gi'memory,elements

states in A, sl,..., S

in T, ml{-;f,mk+1annd. m1;=_y, such. that for i;S;k, eithexr ::iniii. o
(L) (si+1,mi+1) = M(si,ci,mi) exists, or
(2) ‘si+1,e) = M(si,Oi,e) exists and m, = mop
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...ck,m) exists, 1t is defined as (s ).

When M'(s,g, R S 1;+1

We have defined the function as M’ instead of- M inasmuch és it is not

un1te an exten51on of 'M because'when Lk = 1 we have M(s, 1,m) # M’ (s,0 1,m)
.bwhen M(s Ul,e) exists. .Slnce it Q111 net cause confu51on, from now on
we w111 call thls fnnctlon M winsteed:ofGHM';v |
Now we can see what e does in’theﬁdefinition‘ef:a‘i—memo;;ﬂstefe.

When e}tmansitien"M€s;6,e5 :.Es),ej"ekists, itimeens‘tngt wﬁéhfafiEMs

is in stete s, has memdryueiement ﬁm, snd'receitestinput ﬁc,fit switehes
to stéte- s’ 'and 1eeves the memory element nnchénged, 40: ggurse, given
.ourtdefinition ef ajl—Msi we couid hemezaccemplished the same result by
m;itiné ¢u£'§u¢h'; mmle.fem:eech memory eiement.' But'thefe”eme stmuetural
reasons fofrnet doing tnis;"in enr disehssion of J me ﬁilllséé{iﬁéf

the sntject'operates‘semetimesfas if he i; tgnpfinglwhat~is in;memem;.
Tne:deterministie‘eenditidn insures tnat thelfMS'is Aeéer'cbhfhééa”éﬁé

has at most one rule to follow. This condition.is similér‘to;e:cendition
in Ginsburg's (1966, p. 74} definition of a deterministie push;aemn
zutomaton, but it does not make:éinsnnrg‘s:assumption tnatﬂit is always
pos51b1e to make 8 next move.'

DEFIN IION - A string x'.gz_ o is accepted 21 a i—gg U ii Eéﬂ.ééil

1f Mrso,x z ) exists and-is in R The 1anguage T(ﬁ) genefated él

u is the set of all strlngs accepted by vﬁ.
nIt is easy to show that the class of 1anguages generated by 1—memory
stores is equal to tnefe;ess"0£:lenguages generated by finite autcmata.
In general we need fewer states for a l-memory store than for the
”equimelent'finiteHantemeten. For any f1n1te autcmaton we can flnd an

equlvalent 1—MS w1th the same number of states s1mp1y by addlng a memory

O - 27 -
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element which has no effect. 1In general, however, we can find an equiv-

alent 1-MS with fewer states.

| We now have to make our special tiefinitionsfor mode.l.ing‘ our
experiment just as we did for finite automata. The deiinitiolis w111be
just like those for finite automata except thet, of. course,k the .mer.nor;r

Ao

element has to play its natural role

DEFINITION The response r of the 1-MS A is a‘ function from

X
AXT to 2 such that for s in A and m in T,
: ;€0 such that there is an s’ in A and an m' in T‘U{é}[

t(s,m) = § ’oay !
. such that M(s,c,m) = (s"ym") or M(s,c,e/ = (s ,m )J .

v

We» see here another reason why our deterministic condition 1s necessary,

namely, to 1nsure that the response of QI is not ambiguous

DEFINITION: Let A pe a 1-MS and L be a 1angua& We saz that 91

responds correctly to L if (1etting r be the response of 91 and

n be the next-word function of L),
(i) _r(so,zo) = n(A), o
and for all x € (4w) - {AD),
(2) M(s VX, Z ) exists and r(M(s 1 X, Z )) = n(x)

DEFINITION: A 1-MS is an ordered—state l-memory store if for a11 si

in A, 0. and 0, in I and m and m in TUfe}, if M(s_c_m)
- 7y — "k = =—. P /™ q —_»{}’— RS S I

and M(s k,mq) exist, then they are equal.

A state diagram for a 1-MS ../b appears'.ﬂ‘in' ‘Pigire 4. ..'A-triple :labeling

a directed line between two states has the obvious 1nterpretation. That
“(o,m,m") Vit
is, suppose si—> sj. Then M(si,c,m) = (sJ_,m ). The 1-MS is




. Vil w.H..opm h.HosmE..,_” 9981S ~paI9pPIO sy, ..,: *3Tq

. / - ‘_._.Z
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0,F,e) where A = {si,l £is 6},

L= {N,I,T,W,D}, T = {O,Lzb}, F = {SG} and M “is defined by the state-
. N R .

defined as £ (A,E,T,M,zo,s

diagram in Figure 4.
g

A simple calculation shows that T(/q = J énd that //b responds
correctly to J. It is also clear that./b has §;dered states. So,
unlike the finite automaton case, we have found ;é ordered state 1-MS
that responds correctly to J. What is essenti#léﬁere is the memory
which keeps track of whether an I has yet app;aggd; it becomes 1 if
it has, and 0 if it has not. Therefore the stagé;jgo not have to keep
track of this important history; all they do ié qunt the number of past
inputs (i.e., keep track of time). o

Now that we have found two differént kinds ;i automata that respond
correctly to J, can we tell which is a better m;;;l of the subject?
Since }L and ./b both accept exactly'fhe samqll%hégage and both respond
correctly to J, there is no discrimination po;sibié here. 1I1f subjects
become either one of the two automata, they wfil%iéafn, and so we can
distinguish them on this basis. Yet }Z and ;/%:ééé‘different; that
is, their structures are different. Hﬁw can w;-dééide which of the two
models is a better one to describe subjects? ?&

This is one of the major questions of our sf;dy. The solution to
such a question in linguistics usually would béf%ééed on introspection,
that is, an attempt to decide which model descxébéé.mental structure best
on the basis of feel. Our pointf. is not to arguéi&iﬁh that method, which
often is the only one available, but to show iné%%ghall example how other

kinds of data might be available. In our casé,'%hgt other kind of data

involves learning. If the structures of the two automata are different,

5 e
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very likely this‘structufal differeqqe_isﬂreflectedAin;fhe deﬁgi;szqfu
1earning,.even-ifxboth automata predic@Aleagg;ng.ﬁf gsymétote.

{q qrder_ﬁo make predictions about, learning, we must qgké some
assumptions about the‘qou?se:of‘learnigg, bgt_qqp.asgumptio;s Q§iiMb¢t
-reasongbly weak (though”they»may be wrong) and fairly'genegs%; 1£ o
would not bhe éasy to £it a model well to this relatively,compigx )
‘experiment; that is not our goal; In fact, our assumptions will not be
-strong enough to predict any of the statistics of learning.

A reasonable model for how a subject may»become:a finite automaton
(and learns to respond correctly in the experimgntz is thé'folloWing.
After each input the subject is in Fhe correct state. That.is, even
:fﬁgugh'ﬁe may not héve‘had th;?épprbﬁriétethéhsiéioh:fuﬁé%iSn %d'get.
“to ‘that state, when the input comes in it switches him to that siate.’
This is imboitaht‘becauseAthen fhé sdb&é;t:&iil hévé‘é éﬁanéelié.iégrﬂ
which inputs may be accepted inqgﬂat'stéfé, that is, Wﬁafwéhéucéirééf;

IS T
il . PEENE

réépdnsé to‘that s&éte is}.
| hFWhén.élsﬁBje¢£ is in h;étate and.aﬂ‘ihﬁutdcbmés in}wwégggsﬁhéﬁfﬁét
thé.éﬁbject to some extént iéafﬁé'fﬁaéw%h;t ihputjié pérf.oéwfhéféarréct
resﬁoﬁsé.tovtheAstate. We do'tﬁi; L&féégumiﬁéAfiaf ¥hére ié én.ihéféﬁent
in éhéﬁidbébiliﬁ& that the subject will include the input in his response
it pod L X TR RS SR S SR

to théfrétaté. We need thé fblldwingﬁzn

DEFINITION: A pair (s,9) for s in A and O in I (for a finife

i

strings y

. Hoo AL A
automaton M) appears in a string x in z if there are

CEE S S DR PO P Lo ) U osLat B R
and z in X such that x = yOz and M(So,y) = 8.

R

DEFINITION: Let ¥ be a finite automaton. For each s in A, the

learner's response to s is a random variable R(s) taking values in
D SR S S S T T S T S SNTRNTS: e T U S e i
.= 31 -
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DEFiNITION?‘ggpresentation schedile is a'seguence' xlf.f.,xi;fii ofv

“ . * B K N oo v L L. . B - . LI TP i
strings in "W - x, 'is presented on trial i, A pair-(s,g) :ig-i- v
strings in ¥ x;, isp on A pair (s,0) 'is

preéented'gé trial’wi‘5ijd(s:6)jfappears’ig"xi; Thé learning sequence

A '--'.';L':'"""A-' e Vo s Tt e e e P
for a staté’ ‘s’ 'is @ sequence ¢f léarner's responses to s, R ,...,Rl...

Let 'f be E‘function from’ [071] ““to’ [0;1] “‘sudii that ”f(x)‘>’X“’fori

x <1 jand E(I)*x 1. s T S e A O P e

‘Assufiption:” ‘For ' finite autdmaton Y. letting D, (s,0)"'= Pr(GSG‘Rg(s)),

. oy B N . ) S T s i

we assume - ST TR hr L et ot T
£(p,{s,0)} if, (s,0) :was presented.on-trial, i

p (s,0) = . v -
+107 000 s R S T
Pi(S,G), otherwise!

oo O . :.f-lrj. - Lo b : B ." . it i T e T ! 5'{“' H ‘ ‘”:"v-.:'.' et 3

In other words, 1f the state and next input were presented on the trial,

i S S T VI YT s

the subJect 1ncreases his probability of making the appropriate response.

Y

0therw1se he 1eaves the probabiiity unchanged If we assume that the

[EE N A W Y siar

Sy

initial probabiiity of including an’input in a response is O then no

wrong input will ever be included in a response, and the subJect s only

problem will be to learn the correct responses. This assumptionwof the

i F
PSR PR

f function is rather general and leaves room for a variety of models,
AL E ; 177 : . gl R

Vi, R TPUTE B B b SRS I R A ST : 1

T

including linear and n-state Markov models. However, the assumption
L Lo dectbe o an . 3 :

vanddetE L SO i ‘ o . FI B cPSRPEANS B

does preclude forgetting,lbut forgetting could have been 1nc1uded by

RRVEREA N B2 PSR T PR ‘ ,,=_j.:_4';”4: v !

introducing a forgetting function. The predictions we make would then
S L coda iadd oo

have turned out in a sense even stronger, and there 1s no reason to
S PR AR DA R

:1.4 Mg

.\,.

introduce this extra complexity.

i . EA N Lo o v,|'-:,'f.: [ t.-.x;kf \‘1 N

The predictions we make from +his assmption are applied to the
X ! L P

11n1te automaton }Z (Figure 1) The flrst prediction 1nvolves the
.v B “’,"i‘lil'!n’f('

1nputs T and W.f We Just con51der T here, because the derivation
, & . N 2 l nf, {

A

for w is the same. The above cons1derations 1ead to the conclusion

N
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thef, ifAbefofextfiel i+ J + 1 1ett1ng .wz’a:#(sﬂi be the number of
ﬁreseﬁtafione 6£ (s ,T) eﬂdiu" #(s ) be the ‘number’ of presentatlons
of. (ez;T), fﬁenﬂ’ o

e € RGsy) | #ep = 17 ana HGay) = 3) = pr&rs)) | Hes) = 1.

B e e o PR | o

In gtpéiﬁ,’mrds, the number of appearances of T does:, .m?ﬁ.,,??.‘%‘}t _when .
they. bring the;automaton. to state [Sé .;gsfead'ef';sl;} Theisame_kiﬁd
of prediction may be .made with w replacing' T. The predlctlon 1s not
.made for D, because in )L D only appears w1th.one state. Slmllar
predictioge mayube teeged_statistically in“a ngmber of,waxe, apd there
is no need to discuss them here, since they are'discgeseq,ig §ectiqn“V.v
‘Essentiallx thipredietiog say that.thege ere ?wo kinds:of tgielezoni
which T appears and that learning T on one does not help on the
other.

A varlant of th1s predlctlon 1nvolves comparlng 1e ningjonﬁjsay,

the response for the second and third inputs. In the experiment the

probabilit;eséof_presentipg each of_thelthree sentencesvoi J are.
 Pr(NTNWID) = 3

é»:

3

Pr(NTIWND)

Pr(ITNWND)

Our assumption leads to:the prediction that after i presentations of
(s,0), p(e,g)u=ﬂfl(q), where the notation fl means function composition

of f, i times. So if there are. t trials in ail

Pr(M-€ R(so)) = ;f%at(O) = Pr(T E R(s )), and- o
Pe(1 € R(s)) = M (0) L Rls,). W
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‘assume

Ong way of inyerpreting thgse equa?iqns ié ?@gt tpg the of 1gqgning
for the response ﬁ:edicting fhe second igégt ghould eq#al{that forrthe
response predicting the first:input. We test tﬁis inqqgr egpér%menti

.By now clear}y sqmgthing genegal ig gqing oq2fThe;eﬂ}§ gégethiﬁg
about the finite automaton model that does not iet the ;ame inputs
become connected in' the appropriate way. . Certaihly if *T * appears in

the second position in two different sentences ‘it should 'be ‘learned-

‘faster, that is, both kinds of learning events should help each other.

The ‘éempirical results bear this olt.
In order to looK at the same predictions for a l-memory store

model we need the

DEFINITION: ~Let ¥ be a 1-MS. For each s in" A‘‘and m in ‘T ufe},

the learner's response to  (s,m) igjg-random'Vafiéble"“R(s,mS taking

by .
values in 2 . A triple (s,0,m), where m,# e, appears in a string

x* in" L' if there are strings y and 'z in ‘¥ such'that x = yoz

and M(gb,y;zo) = (s,m). We say (s;0,6) appears in x' if x = yOz
and there is'an ' m '}2' T such that ;M(éo}d;zg)*é (s,m)" andh'M(s,G}e)

exists.

Other definitions are just as beforefvmaking the appropriate new

definition of “appears.”

‘Assumption:. For a 1-MS ,ﬂ,;lettingw.pi(s,clm) = Pr(a,E,Ri(s,m))L we

f(pi(s,d;h)) “if" '(s,0,m) was présentédon i’
pL(s,0m = 1
Pi(s,o,m), otherwise .
The 1-MS determines the next response using the current state and memory

element, and learns in this manner also. What is especially important
for us is that it can determine the next response by using e and

- 34 ~



ignoring memory completely. Thus, when it is ready to accept T, the
1-MS ignores the fact that there is a. 1 or a 0 in memory, that is, that
the past history is different, and thus, can let each presentation of
T help in learning T as one response. This is exactly what the
finite automaton model cannot do, as we saw previously. To.see the
result for the 1-MS model, we consider the cases when the finite
automaton. é% .is in 81 or s, that is, when an N or I starts the
sequence, respectively. Suppose i sequences start with N and
with I, as before. Then by our learning assumption, for the 1-MS
(Figure 4), noting that (sl,T,e) is presented on all of these trials,
we have

PriT € R(s ,e)) = %3 ¢0).

We see that contrary to the result for finite automata, all trials have
an effect on the learning of the single T response. This result was
found to hold in the experiment and thus helped to suggest that ,/é is

2 more appropriate model than )@.

In contrast to the set of equations (1), the 1-MS model predicts

Pr(N € R(so,zob) = fggtCO) ‘ '
)
Pr(I € R(so,zo)) = fA@t(O)'
Pr(T € R(si,e))' = ft(o). o - (2)

Thé.first two equatioﬁslof thé set‘are the same as in (1;. But the

last one is different from the-seéohd tﬁo of (1). Equafioh (2) predicts
faster learning forl T than.for the first response set, in ééntrast fo
Equation (15 which predicté equivéiént 1earning; The fesuits.gear out
the prediction of.ﬁéhéfioh:(2), éha‘fhé 1-MS moael agre;s'£é¥ter Wi&ﬁ
data:once agéih. | S |
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The essential properti of ,lb that allows us to make these predictions
is its ordered-states that can tie together two identical inputs- ¢
occurring from the same state, but with different histories. The: finite
automaton cannot do this.

‘Perhaps a general word is in order. There is a certain sense in
saying that pagt of what we are studying is the psychological process
known as "generalization.”" For example, the l-memory stofe model
predicts that a subject generalizes from a T with one hiétory'to*a
T with another history and says that in a ‘certain sense they are the’
same. This generalization takes place over time, but relative time,’
that is, relative to the place of the word in a sequence, since ‘the
two appearances of T are very different in absolute time. The point
I am trying to make is that any study of generalization demands a
structural model of some kind. Traditional generalization studies have
been done in areas where the generalization operate& over a simple .
structure, namely, one continuous dimension.such as the frequgncy_of a
tone. There is no simple, l-parameter way of characterizing the
generalization in our experiment. One has to deal with structure and
to work with a model of generalization oyer\that structure. Our guess
is that once structures have been wque&nout in. a particular-area, the
generalization model wil; prove to be a natural one for that structure.

In relating our theoreticai rgsﬁlts £o fhétsroad;r questioﬁ of
éyntax learning, we find the notions of "paradigmatic" and "syn?agmatic"

(e.g., Ervine-Tripp, 1961). Paradigmatic responses are mutually

substitutable in a frame. Syntagmatic responses occur next to each

“ other. 1In response 1, we might say N and I are paradigmatic responses,
\)‘ t LI

ERIC -3 -
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because either one can occur there. But it is important to realize that,
say, I and N in response 3 are not paradigmatic in the same sense.
That is, although both can occur in position 3, they are not mutually
substitutable, because whica pne can appear depends on the history of
the string. EssentiaIly,Hﬁaradiéﬁatig'responses are responses that fill
tha aame;slot»%a.an ordered-state finite“automatpn. We can generalize
thia’ﬁéiiéhlby saying that paradigmatic %es?anéaé?fii} ﬁhe same slot in
an orde}ed—state l-memory store. ..

’ I end thlS section by presentlng a’ summary of our predlctions.'_“”

Flgure 5 shows what results 1ead to what conc1u51ons.

. O
I

e o i ey e . S g S P A Ot A o S o
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J learned S o ‘ J not learned.

AN

T(and W) learned T (oﬁd W) Iedmed S>ubjecf"bécomgs
independently - - | ordered  state :

after N and 1 on all trials finite automation
Subject becomes Subject becomes
finite automation | 1-memory store

Fig. 5. Diagram of conclusions to be drawn from
various experimental results.

- 38 -




' III. Syntactic and Semantie Models * -

b
'

i RS LICE 4
.

.. The purpose of this section is to provide another rationale for
choosing the kind of system we studied. We discuss a linguistic model
which has things to say both about syntax and semantics in natural

language and which shows how our miniature system seems to capture some

23 FREER RN

essential properties of that model.

LA )

Thejmpdelwwastgroposgd first by Cpomsky (1965). We do not discuss
the details of_howtit applies to natural language. Although by
presenting the theory in the way we do, we might have a tendency to

caricaturize it, the essential ideas should be represented adquately.

RO H F I E)

__Chomskyﬁsvpypposal is that all natural languages take something
like the following form. There is a single, universal syntactic base

which, except for lexical entries, is mostly context-free. This base

PN N

is universal in the sense that all languages have the same base. The
context-free base-operates first, and then the context-sensitive lexicon

S

.- (RPN

rules. The lexical rules (which insert words) of course are specific to
each 1anguage._aAt thislpoint we have a_collection of phrase~markers. The

transformational iules now operate on these phrase-markers, changing the
phrase-markers and at the same time the terminal sentences. The trans-
AR : D Do, : T O KR B S SR AT HS L b

PSR

formational rules ége specific to each language and are what cause the

IR G

syntax of different languages to be_different. One more assumption

LR oty BRaat

(originally proposed by Katz and Postal, 1964) is that transformations

do not alter semantics. That is, the meaning of a transformationally -
of the sentence it

i

derived sentence is not different from the meaning
was derived from. Chomsky argues that all semantic interpretatibn is
. B S R B e A
O
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ST T

done on the base.::This concey?ion‘qf gr?mqa: has recently been challenged
by a number of linguists, for e%ambié;:Lakéff and Ross (1967), who.claim
that, instead of a base generating syntax with a semantic interpretation,
the base éhbﬁid direcfly generate Seméﬁ%iés."S?hfaétié=fiaﬁéfdfﬁiﬁfGﬁs
wouldvbe:a;fihedufb 6perafeJ6ﬂ tﬁe'outﬁﬁt of a semantic base. “This view
isvkﬁéwnhés'dgen;fative semantics" ‘as opposed to "generative ‘syntax."
However, only the barest suggestion 6f'forﬁéii@oik'h;swﬁeén“doﬁé'fiﬁﬁ“'

this point of'view,vfdf the reason that the'bidﬁiéﬁ‘df‘Séméhfiééhrep-

1

resentation is almost completely unsolved for natural languige. It is

not clear how this approach would change the way in which we repreent
Lo d iy oo Tl SR s . - i Do s ' SRR
our arithmetic example, and we will ignore it from now on.. =~

LTt

We looked for a small domain on which we could experiment “that

would have aéthany eSééhtial pioﬁéftiésisfjthe abdﬁévéfsféﬁfﬁs ﬁos§ibie,

while hdlding down the hon—cruciai:cdmﬁleiity'as much as possible. This

tu;hed ﬁé to arithmetic. ifitﬁﬁéfichs taught in'almdsf“aiif iffﬁét{all,
coungrieé.ﬁﬂéié.théré’is éhy Kind of formal education. It is a simple

‘Js;éfem ﬁhich, ifvfufné 6u£:‘éanlﬁevéas€Jiﬁ é foiﬁgwitﬁigﬁétifhe e
' proﬁé?tiésﬁééédfréd\gy‘fhisvfheSry; Weuafé;tdlﬁihé hére aﬁodf'sﬁoﬁéh'
érifﬁmetié, fhéfliéjvééﬁténces Which'migﬁftbelgaid:in & cIQSSfdomFWhéh
; ¥é;cﬁ;¥ islgé;éﬂiné ;:cﬁfid;afiéhméficf' It 'is not:'t':'rué'Vi:‘ﬁﬁf"'é'ﬁi')k'é'n:{‘j

r

éfitﬁﬁé£ic‘:;‘thé samé froﬁtébﬁnf§§>téfcdﬁntfy;: The qdéstiéﬁénéfédééked
in éﬁiéﬁéﬁége, éﬂé iﬁhguagésiaifferis We iooked.at Ffénéﬁ;{ée}han;éhdn
ﬁdssiéA,Jbﬁt'in éiﬁple ar;tﬁgetic séhtéﬁéeslwé did not fihd much more
than different lexical items. That is, there is a function £ frém‘vl
tol Vé: wﬁefe V1 is the relévaﬁt‘roabulafy ofwianguégé i”and”bé‘”ig

the relevant vocabulary of language 2 such that if vl...vﬁ'”islh}
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sentence of language 1, then f(vl).:.;f(vn) is a sentence of language
2, and the two sentences mean -the samegfﬁhat is, the;r answers.are the
same. This is not true for these three 1apguages ;g;general, but it is
roughly true for the small arithmetic domain we examined. Of course, f
is the usual translation function. However, Japanese provided some
differences in syntax, and sb We%settied‘hﬁon'thét 1énguage.

What is important is that thefgggé Qf.arithmetig is universal across
cultures. The part of arithmetic that_does not depend on language is
universal or almost universal. .Spécifiéally{ an equation like "2 4+ 3 = 5"
is almost universal in classfppms th?oughgut'the”woxld. Even the so-
called "Polish" notation in which the above equation would be written as
" = 4+ 235" is not used in school classrooms, as far as we know.

0f course, the question, "What does 2 plus 3 equal?” is not universal,

but is specifie to English. This sentence can be described via a trans-

formation from an underlying sentence such as "'x = 2 + 3," which may be

an equation in the universal base. The system we propose for arithmetic,
in other .words, has an underlying context~free base which is roughly
unive;sal aﬁd generates arithmetic equations. Transformations then
operate on this arithmetic base to yield sentences in a specific language.
The transformations are specific to each 1anguage and thus have to be
written for each language. The base, on the qther hand, must be constant.
This model can be worked out in practice. .We fake as our base the

rules in Table 1. The notation is standard linguistic notation:. Set

brackets mean to choose exactly ocne element inside the brackets. QYN

S



CTABLE 1 oot

~'Syntactic Base for Arithmeétic. The Rulés are Ordered’' '~

"“and May Apply Any Number of Times,

1

‘4. N - '{0;1,2,3,4‘,5;*}
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represents yes—-no .gquestions, Q -represents what questions, and C

. wh
represents commands...There is a question, of course, .about what, a base
for arithmetic should contain. - We do not:.claim that there is.any. .
particular reason to pick our base over one slightly different. Our
point is that the model can-be applied, not that we have.found. the.
correct. solution or even that there . is a correct solution.  The whole
problem of evaluation procedures for grammars could-be. brought. up. here, -
but it would serve no useful purpose.

The base is context-free, as the model requires. Note.that it
generates many non-true sentences, but it is set up to generate all well-
formed sentences, not all true ones. :The base generates well-formed.
sentences for the first 6 (0-5) integers, which.are the ones-we used. in.
fhe;experiment. It could be modified for_ any finite number, or a
separate system could be written to generate all the integers.

A more difficult task is to write the transformational rules for a
given 1anguagé. One problem is how much to include, since there are.
many ways of asking arithmetic questions or giving commands.in, say,
English. We have, fairly arbitrarily,_gelected some of the more
proﬁinent sentences to generate. Once again, the goal has beepthl
demonstrate that the model is applicable,Anqt to yield any kind of
complete solqtion. |

Aprendix I contains a sketch of_thg transformational rples for
English grithmetic and Japanese arithmetic. Notation is the”staQQgrd
one used in transformational theo;y (seg! for gxampié,‘Chomsky and
_Miller, 1963). _?he sentencgs ggngrated_by.the Japanese gra@mgr were

obtained from a Japanese informan;, who was told to judge sentences on
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whether they weré likely to be ‘heard in an elementary—school”class.~:***
Dthers have written a grammar using the same base and same form:'ofi -~ .
transformations for Germar' arithmetic and, partially,' for Russian-
azl'ith‘m'e'tic.“” R oL : . . 1 R S T AT

So far!we -have seen how theé syntactic properties of the linguistic
model we are discussing can be ‘incorporated in'the arithmeticimodel. = -
What c¢an ‘we 'say:about semantics? - The semantics of the simple arithmétic
we are discussing is well understood. - The:'semantic model is' the-truth-
model for arithmetic. There are- two kinds of base sentences’thoseé that
contain'an x (variable) and those that do not. These two kinds of -t
sentences have different semantic interpretations, analagous in Englishi
generally to-"what'" questions- on:the one hand and:'yes,no" questions’on*
the other.  We define the meaningiof a base sentence in the following i/
way. Let L(B) be the set of all terminal strings 'generated by the -
base.: The meaning - A: is“a'fﬁnctionifromf L(B) - into-‘the .set ofisubsets
of positive%and'negativefigtegers 'ZI, plus the values- T and: 'F:(for-:

true and false), that is

A:L(B) *‘QI'U{T,F} ,
meetiné'the'foliowing conditions. Let s be in L(B):'IThéh,
(i) Uif éiﬁ Q&ﬁﬁlfdr some 'E; then if E >¢6ntéihs ﬁn x;“A(éjb=”¢,

and if E does not contain an x, A(s) =T if E is true,
‘and A(s) = F if E is false. e s

s R R T : P by T, I BN R N T
(2) if s = QwhE for some E, then if E does not contain an x,

@. If E contains an x,

A(s)

A(s) = {rational numbers i such that s is true when i is

L R T I L

substituted for x 'in
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(3) if s = CE, then if E contains an x, A(s)

¢, and if E_
.. does not contain.an. x,

.. A(s) = .(the rational number y . such that .y

E is true).
The»meaning.of'certaih‘termingl_strings is‘gmpty. Fprﬁegample,_wpgg”ﬁpe
sentence is yes, no and there is a variable in thevsgntgnce, we qqnsidg;
the meaning empty because there is no reasonable answer to such a question,
unless the value of the variable has been specified. We are not
considering such processes here, though in principle we_could.-:It'
would involve some linguistic processes not well understood,‘namely,ff_
meaning relations across. sentences.

We can paraphrase the three conditions above. Assuming that the
proper variable condition holds, we see that the meaning of a yes, -no ..
sentence is simply its truth value. The meaning of a "what" question.
is the set of values that make it true, that is, its answers. _If yhere
is exactly one x in s, then ,A(s) . Will contain exactlqupe(integep.
If there is more .than oﬁe x. in s, then A(s) may contain different
numbers of elements. For example, A(Qwh3_+ x = x) = @, the empty éét,ﬁ
because there is no value of x which makes this sentence true. On the
other hand,,,A(Qwh X + X = 8)1: {4}, and A(Qw" + 0 =x) =1I, the set of
all integers. The meaning of a command is simply the number obtained by
carrying out the operations in the sentence.

Now that we have defined the semantics of the set of base sentences,
we can define the meaning of any sentence in the language, that is, we
extend A to be a function on T(B),‘the language generated by.the base
together with the transformations. If .s € L(B), we let the transformational

rules apply to .s and obtain the sentence T(s). Let T-l:T(B)_* L(B) be
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1, 3 . .
(") = s, then T(s) = s’.

the function 'such that if s’ € T(B) and T
-1 . T

Our statement that T is a function requires that T ' be a one-to-one

function, that is, the transofrmational rules may not take more than one

base sentence into a given surface sentence (a surface sentence 'is one -

‘on which the transformations have operated). 'This is the case with our

“transformations, and for simplicity, we make this one-one assumption’

here. However, the assumption is not necessary; instead we ‘could have
let 'T_lzT(B) - 2L(B). In this case we would have (sémantically) - **~
ambiguous sentences, as we will soon see.

Now we can define the meaning of any sentence. Let s € T(B).
Then we define A(s) = A(Trl(s)). That is, we extend A to a function
on T(B) by taking the meaning of a non—baéé sentence “o be the meaning
of the base sentence from which it was derived. We have ‘captured here”
the semantics assumptions of the linguistic model. Thé-meaningJis”inv'
the base, and transformations do not change.meaningf For example, ™
A(QWHZ +3 =x) = {5]u Applying English transformations to this ‘base
sentence yields "What is two plus three?' By our definition, ‘A (what is
two plus three) = 5. Returning to a point we made earlier; if ' T were
not one-one and we had defined ’1"—'1 more generally as w ‘suggested - +
earlier, we could have generalized A, defining it, in essence, ‘as the-
set of meanings of the sentences which transformationally map into “it. -
Thus semantic ambiguity. A sentence has more than one meaning
when it is derivable transformationally from more than one base'sentence.

Perhaps we may say a word more about the semantics groups in our
experiment. ‘We suggested in Section I that semantics might help syntax

learning by restricting the possible structures. -In the éxperimental
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language : J, the sentences have only one answer, and this restricts the
possibilities, given the base,: of their syntax. For example,. it is
unlikely that a sentence would contain "ikutsu" twice and a number only
once, because only rarely would such a sentence have exactly one answer:
A possible model of what a subject is doing wher he is trying to learn
semantics in our experiment is that he is looking for the base string
which transformationally maps into the sentence he is examining. Since
he knows the semantics of the base string (we assume this; surely it is
true for oar subjects’ knowledge of arithmetic), if he can find the base
string, he will know the semantics of the surface string. Now, since
meaning does not change when transformations are-applied, any essential
meaning-bearing elements in the base sentence‘wili have to be represented
somehow in the surface sentence, or else the meaning will change. For
example, if the base sentenée contains two numerals, then these numerals,
perhaps in some transformed form, must appear in the surface sentence.
Therefore, practice on semantics might lead the éubject to realize that
the strings all have two numerals, and this would tell him something
about the syntax which would help him in responses three and five. Thus,
if an ikutsu has already appeared, then the third word must be a numeral.
Similarly, semantic considerations say something about the:fifth word.
That is, semantics restricts only words three and five. So it is on
these responses that the restriction-of-structures medel of semantics
predicts that subjécts will learn faster.

The main point of this section has been to provide a rationale for
studying spoken arithmetic. The miniature syétem we studied seems to

capture many of the essential properties of the linguistic model. Perhaps




by studying the learning of the miniature system we will increase our’

understanding of the learning of'natural languages.
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IV. Experimental Method

.. Outline of Egpéfiment

Briéfly,‘thé expéfimenﬁ had the féllowing form. Part I consisted
of pfétraining oﬁ the four function4words, so- subjects could learn to
recogn;;eythe words in senteﬁéesxahd also so they could be trained to
respéédvgitﬂ the fifst letter bf the word where'éppropriate in PartHIII,
Pa?ﬁlil was pai?éd-associateEiearning of the six Japanesé numerals’ from
-0 to So. This was necessary‘so that the semantics gfoﬁp‘could learn the
semanfics of the seﬁtences in Part III° As a control, the non-semantics
grouﬁé also 1earﬁéd>the nuﬁzérals° This part further allowed thé'suhjects
- ﬁs‘iearn the numerals so tﬁey coﬁld respond N where appropriate in’
fartFIII. fé?t I1I presented theﬁsehtences slowly one word at a time,
ahd the subjects tried to learn which word or words could come ﬁext.
The senténée was repeated quickly; The semantics group tried to write
the answer, and then saw the correct answer. In case gross differences
exXisted between the semantics and non:sémanfics groups, three non-
semantics groups were run to see if we could pin-ﬁoint the factor
causing that difference. None of the non-semantics groups saw or
attempted to give the correct answers, One sub-group did nothing while
fhé semantics gfoup ﬁrote and saw the answefs° However, if this group
did worse than the semantics'group on all the'résponses of the'syntax
learning, it might be érguéd that this was due to a 1ack of practice in
general, The seméntics gfoup.might have spent more time on a task
relétedfﬁo  and concerning the same sentences as the syntaétic'task.
vTheréfore a second sdf»gfoﬁﬁ was fﬁn which,'in the time that the seﬁhntics.

group was writing and seeidg thé'answers, had the task of writiﬁg down
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in order the first letters of the sentemce they had just heard repeated
quickly. This gave them direct practice on thg syntax in an attempt to
nvercome the stated objection. Both sub-groups wéré Edld; aé_was;the
semantics group, the basic algebraic natﬁre pf the sent:encchaé.~ -This
might make a crucial differeﬁce, ana might.in fact be‘thé efféc?Jéf
semantics. This is, knowing the‘algebraic‘nature pf thé sentéﬁcéé”
would very likely aid syntax 1earning. Therefore;’é third sub-gfoﬁér!
was run which was not told the forms of the-underl&ing eﬁﬁatiéné? This
group like the first sub~group received no_taskbduring the period.thaﬁ
the semantics group was answering. We Wouid expect that this gréup
would do worst on syntax learning. ,Part‘IV of the experiment preseﬁted
various sentences, half of them drawn from Part III sentenées, ;ﬁd ﬁﬁe
other half dfawn from sentences containing "ikutsu" twice or, in a féw
instances, sentences ungrammatical iq othef ways. The ;ubjectls_task>
was to answer_l for grammatical and 0 for ﬁngr;mmatical. Then the
correct {0 or 1) answer appeared, | ” |

Speaker. The speaker was a native ‘Japanese graduate student at
Stanford University, who had left Japan for the first fime two years

before the experiment.

Presentation. The entire sequence of matgrial for the exbérimént
was recorded on videotape and shown to thé subjgcts on closed-circuit
t.levision., The only things to appear on the écreen were thé Japanese
speaker and, where appropriate, .an integer, e.g., "2,." Whenefer we

refer to "the subject heard" or "the subject saw" or "an integer appeared,"

we mean with respect to the television screen. When we say an integer

appeared on the screen, we always mean in numerical form, e.g., "2,"

not "cwo™ or "ni,.®
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SﬁbjeCts} Sevéﬁty-three éubjects were recruited from the Stanford
stUdené éiaééﬁent service., Most of them were either students in summer
school or students dufing the regular academic year. The subjects were
run in groupé-of si% to thirteen. All subjects run together were run on

the same'conditidﬁ,’i;éi,:either'they were in the semantics group or the

same non-semantics sub-group.’

Procedure. The four parts of the experiment were rum sequentially,
with each subject participating‘in all four parts. The entire experiment
lasted less than éﬂ hour and a half. There was no delay between parts
exéépt an interval of less than a minute to collect the subjects!
response sheets. Instructions for each part were read at the beginning
of that part. ‘Questions were answered, and then the television
immediately came on with the beginning of the stimuli for that part.,
Before the Part I inStructiOns,‘there were brief instructions informing
the subject that this was an experiment in language learning.

Part I - Word Pretraining

Materials were the four Japanese words “ikutsu," "wa," "tasu," and
"desuka." The words were spoken five times each, one at a time, for a
total of 20 words, There were 3 seconds between each word, The subject
was given a sheet of paper with 20 spaces and was told to write the first
letter of the word (i,w,T or D). (The words had been read to him'in the
instructions.) There was no feedback on this part. |

Part II - Numeral Pretraining

Materials. The first six Japanese numerals..

zexro - 0
ichi -1
ni - 2
san = 3
shi = 4
go =5
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.the correct answer appeared. .

t. . Instructions. The subjects were told the speaker would say a

Japanese number and that they were to learn the English translation.

They were to write their answers on a provided sheet of paper and to

-guess. if they .did not know the correct answers. TTbey werertold the__

..correct .answer would appear in numerical form after the period in which

they were to write the answer, and they were to write the answer before

-Procedure. The numerals were spoken in Japanese by the speaker,
An item went like this.. A Japanese numeral was spoken. -During a 3%-

second response interval the subject was to write his response. Then

“the correct answer (translation), an integer in numerical form, appeated

on the lower'rightfhand of the screcen for 2 seconds. The next Japanese
numeral was spoken. An example of a trial on the numeral 3 is

speaker says "san" -~ a 3%-second pause while subject

writes down
his answer =--

"3" appears on screen for 2 seconds -- next item,
There were 10 trials on each of the pumeralé for a total of 60 items.
The numerals were presented in trials with no break petqgen trials.
That is, the six numerals were presented randomly, then ;ef;andomized
and presented again; this process was repeated to give 10 trials.‘ Thg
only constraint on the randomization was that a numeral could not appear
two times iﬂ a row, that is, the same numeral QPPId.EOt end one trial

and begin the next, .

Part 11 ~ Sentencé Learning

Materials. The sentences used were of the following three forms

ikutsu tasu N wa N desuka,
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Coobae UHTU NG itasucikutsuswa N . codesuka, oo es

RS “N-“tasu: N+-° s iwaldkutsu desuka, . oos 0 B
where N stands for any:Japanese:numeral from 0.;to 5. -(Different:N's
in ‘the 'same sentence were notjnecessarily.theqsame]numggal,?pfscqurse.)

A-ﬁayitoiinteqpretithese-séntenées‘is;;to:translatew"ikutsu? as "yhat,"

~"tasu"¥ashﬂp1usgﬂ andi"wa";as,"equéis;" so- that: the.first-sentence;is.

"What plus -Ni-equals N," the::second "N.:plus:what;equals;. N,":and.the
third:"N..plus N equals.what?": When we:speak:of-the correct answer. to
any of: these sentences, it was-obtained~by‘finding.the correct answer,
to the' translated sentence. " For.example, -recalling:that "san";= 13" .
and?"go"s=dﬁﬁﬂ-in‘thersentencewﬂsanttasutikutSu was; go: desuka," we know
the“correct answer is¢"2a"~fAccording to.our.Japanese: speaker, these_.
sentences would:-be spoken in ‘an.elementary~-school arithmetic class..
Half of -thensentencesiwere chosen from the-tﬁirdjform:shown;above:aukL
(i:es, NTNWID), and-the: other half was divided.between: the:other. two .
forms. Note that the third form demanded that the subject add:to:get
the ‘correct “ansWwer, ' and the other: two:forms. demanded. that.he subtract,
Thus, by any constant guessing scheme;. if the: subjects did'nothing but
add or subtract-the two numbers; the semantics group would be correct.
half:ofi.the time, - . & & ta o R S R N Ot SO S
‘Altogether. ;72 sentences were presented... Using: the iintegers 0-5, we

had 6 X 6'=!36:sentences. of the fcvrm NTNWID. - Since:we  did not: want .any

" answer.-greater than 9, we elimindted .the sentence with two 5%s' to give

35 sentences. . Then:we: repeated one. sentence to:provide 3G sentences
for+this form, - If we look-&t the form ITNWND, there are only 21-pos-
sibilities:bécause to assure -a’ positive answer,the :second ‘N . has to

be greater than or equal to the first N. We picked 18 of these 21
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point only one word would actually‘be said in a sentence, but the
patterns were such that sometimes another word could have been said.)
The subjects made their predictions by writing the first letter of the
word in the appropriate box on the sheet provided if they wanted to
predict ikutsu, wa, tasu, or desuka. If they wanted to predict a numeral, .
they did not write the first letter of the number, but wrote N., To
repeat, the subjects were told that they could write either one or two
of the letters I, W, T, D or N at each point,

At this point instructions among groups differed. First, the
semantics group was told that after they finished the above procedure
for a sentence, they would hear exactly the same sentence repeated, but
this time more quickly, at a fairly natural rate., After they heard the
sentence repeated, they were to write the answer to that sentence, a
digit from 0 to 9, in the space provided. If they did not know the
answer, they were to guess. In & few seconds the correct answer would
appear on the screen, and they were to try to learn so that they would
be. correct.

Groups SW and SA were told that the sentence was repeated to help
them learn it, They had no other task before the next sentence started.
Group SW was told the same thing, but had the task of writing the first
letters of the sentence they had just heard in spaces provided for them,
with the digits not N, actually being written.

Procedure. The number of subjects in each group is given in Table

2, The subjects were assigned randomly to groups to the exterit possible,

- ) D 2 - sy -y O o T



TABLE 2

Number of Subjects in Each Group.

Total
SW SW SA s S Total
13 13 13 39 34 73
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given the times that they could appear for the experiment, which was run
in groups of 6 to 13 subjects. Each group was provided with paper
marked for the responses they were instructed to make, For example,
none of the § groups had room for numerical answers to the sentences.
The spaces for the predictions for the next possible words coﬁtained,
for each position, a box with a comma in the middle so that subjects
could put in either one or two responses.

A trial started by a tone sounding. The subjects were given 4
seconds to make their predictions of the first word of the sentence.
Then the first word of the sentence appeared (i.e., it was said by the
speaker on the screen). Again the subjects were givep a 4-second pause
to write their predictions for the second word. The szcond word was
said, and so on, until the end of the sentence. After the sentence
was finished there was a 2~second pause, and then the sentence was
repeated by the speaker, but this time at a normal rate of speech.

For the semantics group (8) there was now a second pause of 4 seconds,
during which the subjects wrote the answer (a digit from 0 to 9) to the
sentence théy had-just heard, Then the answer appeared on the lower
right of the screen for 2 seconds. After a l-second pause the tone
sounded to begin the next trial. A diagram for the sequenée of events

for the example "san tasu ikutsu wa go desuka" appears in Figure 6.

D s 4SS D G ED N ED B S AD D M G 4D OE OV-Ee-ED

Up to the point after the sentence was repeated, the procedure was
the same for the non~semantics groups as for the semantics group. How=-
ever, the answer did not appear on the screen for the non-semantics
group, and the subjects did not have the answering task. Exactly the
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Television

Comment

Subject
Comment

Time

Television

Comment

Subject

Comment

Time

Figure 6.

tone

sounds san tasu ikutsu wa
trial s1 s2 s3 s4
starts
N,I T N,I w N
R1 R2 R3 R4 R5
4s 4s 4s 4s 4s
go desuka san tasu ikutsu 2 tone
wa go desuka sounds
S5 S6 pause sentence . . correct pause next
repeated faster answer trial
D 9 starts
R6 number
response
4s 2s approx. 2 to 3 4s 2s 1ls
sec.

Diagram for the sequence of events for one trial for Part III,

Group S (semantics) on the sentence ''san tasu ikutsu wa go

desuka.”" The responses given for the subject are those he
"

would give if he were correct. In the time row, "s'" means

"seconds."
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same videotape was used for the non-semantics groups as for the semantics
group, but for the non-semantics group the answer was covered, so that
there would be no difference in presentation between the two groups
exceﬁt for the appearance of the answer, Thué after the sentence was
repeated, for the non-semantics groups (§'groups), there was a pause of
4 secqnds (as for the semantics group), plus 2 seconds (the covered
answer was on) plus 1 second (as in the second pause for the scmantics
group) for a total pause of 7 seconds. During this time groups SW and
SA had no task, Group SW had to write the sequence of the first letters
of the words in the sentence they had just heard repeated. For example,
if they heard, "san tasu ikutsu wa go desuka" they should have written
"3TIW5D."

The 72 randomized sentences were presented in this fashion. All
the subjects had the same order of presentation of sentences; indeed,
the tape was the same for all subjects.

Part IV - Grammaticality Learning

Materials. Fifty sentences were used, Twenty-four of them were
"erammavical" (G) and 26 "ungrammatical" (U). (Thers were supposed to
bz 25 of each, but a mistake was made in the recording.) The 24 G
sentences were chosen randomly from the kinds of sentences used in
Part 1IL; 8 of each form were chosen., Of the 26 U sentences, 22 were
selected from Part III, grammatical form, substituting "ikutsu" for
one of the numbers; a typical example might be "ikutsu tasu san wa
ikutsu desuka." Tﬁese 22 were about equally divided (7, 7 and 8) among
the three kinds of sentences whose original grammatical sentence was
one of the three kinds of Part III sentences, These kinds of ungrammatical

sentences were chosen, because if a subject became the Kind of oxdered-
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state automaton we discussed in Section II (Figure 3);ﬂheuwou1dﬂ
consider these sentences grammatical.

The other 4 U sentences were chosen by permuting two words in a
grammatical sentence. The sentences were

ikutsu desuka 1 wa 3 tasu,

0 5 tasu wa ikutsu desuka,

2 ikutsu tasu wa 3 desuka,

ikutsu wa 2 tasu 4 desuka.
The 50 sentences wer2 randomized; the only restraint was to present the
4 special U sentences at least 8 sentences apart,

Instructions. The subjects were told that in this part they would
use some of the knowledge they learned in Part III. They were told
they would hear Japanese sentences, and "your job is to determine if
these sentences are exactly like the sentences you heard before in
Part III. That is, could this sentence you hear have been one you heard
before? 1If yes, write a 1 in the box., If no, write a 0." They were
told the correct answer would then appear on the screen.

Procedure. The 50 sentences were presented randomly as described
above, The subjects were given sheets of paper to write their answers
on, A trial went like this, A sentence was spoken. There was a 3%-
second interval during which the subjects were to write their answers
(1 or 0)., Then the correct answer {1 or 0) appeared on the lower right
of the screen for 2 seconds. The next sentence was read and the cycle

repeated.,
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V. Experimental Results

Part 1 - Word Pretraining

On Part I, out of a total of 1,460 responses (20 responses X 73
subjects), there were only 11 errors., Clearly the task was extremely
easy, and subjects had no trouble discriminating the words.,

Part 11 - Numeral Pretraining

The learning curve for Part 11 appears in Figure 7.

- - . - - - = -

Clearly an asymptote of no errors has been approached. On the last 3
trials there is a mean number of 2.5 errors per trial out of a total of
73 possible,

Part 111 ~ Sentence Learning

Syntax Responses. We cal. the responses the subjects made in pre-

dicting the next possible words their syntax responses, as opposed to

the semantics responses, which were the number answers for the semantics
group. The form of the data is the following. There were 72 trials for
each subject, and for each trial six words were presented, which we call
the stimuli, and signified, in order of presentation, Sl,.;., S6. A
subject made a "response" which is blank or a 1- or 2-element subset of
the letters N,I,T,W.D. In fact, all the responses were of this form,

and there were no other letters used by subjects.' Further, no subsets of
size greater than 2 were used. (The form of the response sheets helped
to insure this.) For simplicity we will not use set notation, but write,
for a response, e.g., R = I,N instead of R = {i,ﬁ}. ‘The six responses

are labeled R1, R2,..., R6, in the order they were made on a trial,
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Recall that Ri precedes Si, When we count responses of various kinds, if
the response contained two elements, we ignore, as the set notation
implies, the order of the subject's response and count both eorders
together, e.g., R3 = I,N means either the third output of the subject
on the trial was 1,N or it was N,I.

Let us first look at whether R3 was learned. The relevant figures

are in Table 3, The first row shows the number of subjects in each group,

- ey Gy G G e

Before we determine whether a subject learned we have to decide if he
followed the instructions. Some :subjects never put two responses in the
same box on any of the 72 trials for any of the six responses, that is,
they never made two predictions for the next word., These subjects, of
course, could never have learned by our definition. It seemed reasonable
to decide that these subjects had not understood the instructions and did
not realize that they could put two responses in the same box, Therefore,
these subjects were not included in consideration of whether subjects
learned. Out of 73 subjects, 14 fell into this category, leaving 59
subjects who followed the instruccions, These figures are broken down
for the S and § subgroups in Table 2, S indicates all 3 § subgroups
combined,

We set the following criterion for learning R3, When S1 = I, then
R3 =N is a correct response, If S1 = N, then R3 = N,I is a correct
response. If, somewhere in a subject's 72-trial response protocol there
is a sequence of 6 or more consecutive correct R3 responses, including
fesponses to at least 2 sentences of each kind, we say the subject learned

R3. Most of the responses in this sequence generally will be N,I since
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TABLE 3

Number of Subjects on“Part III :in.Various Categories.

_ — — Total

SW SW SA S -] Total
Total Subjects 13 13 13 39 34 73
Subjects who did
not use 2 responses 2 1 4 7 7 14
Subjects who
followed 11 12 9 32 27 59
directions
Subjects who
learned R3 11 8 7 26 24 50

Proportion of

subjects fol~

lowing directions 1,00 .67 .78 .81 .89 .85
who learned R3
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more sentences begin with N than with I, but the criterion requires
that at least two of them be N and that these be in sentences starting
with 1. This requirement is made so that a subject cannot be «onsidered
to have learned simply by always saying N,I regardless of S!,

By this criterion, Table 3 shows that 6 subjects in Groups S and 3
subjects in Group S .did not learn. In o6ther words, 50 of the 59 subjects
(85 percent) who understood the instructions learned. Eighty-nine percent
of the S subjects and 81 percent of the S subjects who understood the
instructions learned, There is no significant difference between the §
and S groups (XZ = 1,56, 1 df, p > .20). There is also no significant
difference from chance on this statistic between the three §'sub-groups
(Xz = 1.07, 2 df, p > .50), Of course, there are relatively few subjects
in each group, when we consider these subgroups. Also, the fact that there
is no difference between groups on this statistic does not mean that there
is no difference in learning among the grcups. The learning rates could
still differ. We have provided evidence that most subjects learned R3; and
that groups did not differ on how many subjects learned R3.

Of the 9 subjects who followed directions but did not learn, inspection
of the response protocols showed that by the end of the 72 trials, 3 of the
subjects consistently responded N,I for R3, independent of Sl. The other
six subjects did not reveal any particular pattern. It seems possible that
the three subjects responding N,I were at asymptote and would not chaﬁge
their responses if more trials were added, Since the other 6 subjects were
not caught in a pattern, they might have learned the correct responses if
more trials were added. 1In fact, some of these subjects almost met the
criterion of learning when the trials ran out,

Figure 8 shows the learning curve for the 50 subjects who met

criterion. The asymptote is almost O, except for an occasional, possibly
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"accidental" error, It seems reasonable to conclude that these errors
are "accidental," i.e.,, that the subject learned, but for some reason
such as lack of attention due to boredom, did not make the correct
response, (A number of subjects complained that the experimental task
was too easy.) The learning curve merely shows in another way that these
50 subjects learned the correct response for R3.,

R5 enters into our theoretical predictions in the same way as R3, so
we turn to it now, We say tnat a response is correct if, when 81 = 1
and 83 = N or when S1 = N and 83 = I, the response is R5 = N, or when
S1 = N and $3 = N, the response is R5 = 1. The criterion was the same
as for R3, A subject learned R5 if he had a sequence of at least 6
consecutive correct responses which included at least 2 N responses and
at least 2 I responses, By this criterion, none of the subjects whe did
not learn R3 learned R5, Of the 50 subjects who learned R3, all but 2
learned R5, Once again, we see that most of the subjects who followed
directions learned by this criterion. In the case of R5, 48 of 59 subjects
learned.

From now on we will consider the data of only those 30 subjects who
learned R3, because we do not know how to interpret the data of the
subjects who understood the instructions but did not learn. This invelves
considering two subjects who did not learn R5, but for simplicity, and so
that we could useé the same subjects on .all tests, we included all 50

subjects even when considering R5. In Figure 9 appears the learning
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curve for R5 for the 50 subjects. Once again the curve shows that subjects
learned, It is important to realize, when comparing this curve with the
curve for R3 (Figure 8) that although both curves plot the proportion of
"correct" responses, the correct responses differ for the two graphs, and
in fact, differ from trial to trial within each graph. For R3, the correct
responses are N or N,I and for R5, the correct responses are N or
I. The fact that the correct response set differs for R3 and R5 reduces
even more the probability of subjects giving a correct sequence by chance,
That is, we cannot compute the probability of subjects giving.a correct
sequence by chance as if, for example, in R3, there is a probability p
that the response is N and a probability 1-p that the response is
N,I, and, for R5, there is a probability q that the response is N and
a probability 1-q that the response is I, We cannot simply de this
because this does not account for the subject's learning the response set
in the first place, 83 was always either N or I as was 85, so there
was no way for the subjects to learn the response sets strictly from a
consideration of what 83 or 85 could be,

A summary of these results is that, in general, subjects learned both
R3 and R3. Also, there was little tendency for subjects, at asymptote,
to respond N, I independently of the preceding sequence of words,.

In Table 4 we list the mean trial of last error, L, for the six

responses for each group. As mentioned earlier, there are 50 subjects

T o o - - —— "

in the table. For responses R3 and ‘R5, the trial of last error for each
subject is determined by the same method as described earlier for the
learning criterion; that is, the trial of last error is the trial before
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TABLE 4

Mean Trial of Last Error, L, by Response and Subject Group.

Total fotal

SW SW SA S S S,S

R1 16,5 27.8 7.4 17.5 19.0 18.3
R2 6.7 8.3 6.6 7.2 8.4 7.8
R3 29,6 33.3 28,7 30.5 28,0 29,3
R4 8,1 15.1 5.7 9.6 10.5 10.2
R5 21,4 22,0 25,0 22.5 14.1 18,5
R6 3n7 304 554 40]- 4°6 403

RI,R3,R5 22.4  27.7 20,4  23.5  20.4  22.3
R2,R4,R6 6.2 g,9 5.9 7.0 7.8 7.4

Grand

14,3 18.3 13.1 15.3 14.1 14.9
Mean




the occurrence of the first run of at least six correct responses which
include at least two of each kind of correct response. For Rl, R2, R4,
and R6, for each of which there is.only one correct response, L 1is
simply the trial before the start of the first run of six or more
correct responses,

Table 2 shows clearly that responses R2, R4 and R6 (the "even!
responses) were learned more quickly than were Rl, R3 or R5 (the "odd
responses"). The mean of I for the odd responses for Group S (23.5)
is more than 3 times as great as the mean for the even respomses (7.0).
For Group S, the ratio is almost as great (20.4 to 7.8). 1In fact, if we
look at the means for each response we see that none of the 3 even
responses has a mean L value as great as any of the 3 odd responses.
This last statement holds also within each sub-group of S. For any
group, there are 6] possible ways of ordering the 6 responses with
respect to L. Thirty-six of these yield orders compatible with the
above statement; that is, the odd values are all greater than the even
values, Thus, if we assume the orders were chosen uniformly, the
probability of obtaining an ordering compatible with the statement is
36/6! = .05, Since there were four independent groups (three subgroups
of S plus S), the probability of obtaining our results by chance is
(.05 <107,

Inspection of the distributions of L show that there are a few
fairly high values, To make sure the results we report for L are not
unduly influenced by these high values, we also calculated medians for
all the values, The medians are shown in Table 5. The pattern of the

resul = is the same as for the means shown in Table 3. Therefore, we do
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not discuss these values, but instead concentrate on the means.,

Table 6 shows the mean number of total errors, T, for each group,

This staiistic behaves almost exactly like L with respect to the
questions we have been considering. Subjects made many more errors omn
the odd responses than on the even,

In computing the trial of last error, L, for R3 and R5, we demanded
a criterion of 6 in a row correct, including at least two of each kind of
trial., This may have caused L t+o be slightly higher for R3 and R5 than
for the other responses. But this is a very small effect. We recomputed
L for R3 and R5, relaxing the requirement of two of each kind of trial,
and found that the pattern of results did not change., This criticism does
not apply to the computation of the statistic T.

Are the mean trials of last error smaller for S than for §?
Generally, no, as may be seen from Table 4, Table 7 shows values of

student’s t for the difference between means for the six responses.

For 50 subjects, the only significant value is for R5 (p < .05). 1In fact,
the other t wvalues are much smaller than R5's, The only other response
for which the mean value of L is greater for S than for S is R3.
These results show that, in general, the 8 group did not learn faster
than the § groups., Figure 10 shows the learning curves separately for

the S (24 subjects) and S (26 subjects) groups for the six responses.
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TABLE 5

Median Trial of Last Error, L.

Total
SW W SA S S
Rl 10.0  23.5 6.0  10.5 16.0
R2 4,0 7.0 5.0 5.5 6.0
R3 21,0 32.0 23,0 28.5 26,5
R4 5.0  15.5 5.0 6.5 8.5
R5 21,0  17.5  24.0 21.5 12.0

R6 3,0 1.5 5.0 2.5 3.0




TABLE 6

Mean Number of Total Errors, T.

- _ — Total Total

SW SW SA 3 .S s,S

R1 15.4  27.9 7.0 17.0 18,5 17.7
R2 6.5 9.0 9.1 8.0 7.3 7.6
R3 20,6 23,9 18.0 21.0  20.3  20.6
R4 7.5 9.6 5.4 7.6 8.8 8.2
R5 12,5 11,3 18.3 13.7 9.7 11.8
R6 4,5 2,5 6.6 4.5 3.9 4.2
R1,R3,R5 16.2  21.0 14.4 17.2 16,2 16,7
R2,R4,R6 6,2 7.0 7.0 6.7 6.6 6.7
ﬁ;:ﬁd 11.2 14,0  10.7 11.9  11.4 11,7
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TABLE 7

Values of t for the Différence Between Mean Trial
of Last Error, L, of the S and S Groups on R3,

Response R1l R2 R3 R4 RS R6

t 0.26 0.73 -0.52 0.38 -2.16 0,46
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These curves as well as the mean number of total error (Table 6) fit the
same pattern of results with respect to the differences between S and S.

Remembering that two of the subjects did not learn R5, it occurred
to us that this may have somehow influenced the results concerning the
difference between the S and S groups on R5., We included these two
subjects in the data, and tock as their trial of last error, since they
did not meet criterion, the actual last trial of the 72 on which an
error occurred. It turned out that this value was 70 for both subjects,
and both subjects were in Group S, Although the subjects in the table
were chosen statistically so as not to favor Group S (they were chosen
on the basis of whether they had learned R3), it might be argued that
accidentally subjects who had not met criterion on R5 were selected for
S and this pushed up the mean value of L for R5, Therefore, we did
a new calculation of L for R5 for Group S, discarding these two
subjects, and calculating the mean L for the 24 remaining subjects.
The new value was 18.5 for L, which, compared to the 14,1 for Group S,
still yields the largest discrepancy between L £for S and S of any
response, Therefore, even if one accepts this argument, Group $§ did
better on R5 than Group S did.

As explained earlier, we ran 8 in 3 different subgroups under
different conditions, so that in case § learned faster than §; we
could see if the difference could be explained by a particular factor,
If we look at the mean L value over all responses, group SW had the
highest value (18.3) and group SA had the lowest value (13.1)., Howeve;,
as we stated in the previous paragraph, the only significant difference

between S and S was on R5, and on this response the mean values of
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L for the 3 s subgroups are about equal, and all are much greater than
for Group S, Since there is no explainable difference between § and

s by these S control groups, we do not consider these subgroups, but
lump the data and consider only the one S group. One short point can
be made about Group SA however. Since this group did not even know the
algebraic character of the sentences, we had expected them to do worst
on the syntax respounses; but, in fact, their score was best., However,
note that on R5 their mean trial of last error is higher than for the
other two subgroups.

In analyzing the difference between the $§ and s groups, we work on
the assumption, of course, that because the groups were chosen randomly,
there was no difference between the groups except for the different
treatment in the experiment, However, we have some direct evidence,

Part 1L of the experiment was conducted before there had been any
different treatment for the different groups. By looking at differences
in the learning of Part II, we could .see.if there was any evidence of
differences between the groups not related to experimental treatment.

In Table 8 we show the mean number of total errors for Part II for Groups
S and §; for subjects who learned R3 and for subjects who did not learn

R3 (including those who did not follow instructions).,

The results are summarized by saying that subjects who did not learn R3
made more errors on the number learning, and subjects in Group S made
more errors than subjects in Group S. (Between learned and did not

learn, t = 1.96, ,05 <p < ,1l; 7 = between 8 and E} t= 12,17, p> .1).
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TABLE 8

Mean Number of Errors on Nu_n_iber Paired-Associates
(Part II) for Groups S and S for Subjects Who
Learned R3 or Did Not Learn R3,

S s
Learned R3 8.1 10.3
Did Nct
Learn R3 11.7 13.3
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These results suggest that subjects who did not learn R3 were poorer
learners in general (whether for motiv;tional or other reasons we do
not know), and that subjects in Zroup E’probably were slightly poorer
learners than subjects in Group S, The fact that 3 subjects did better
on four of six responses in Part IIT together with this last fact once
again suggests that semantics does not have a general improving effect
on syntax learning,

We have seen that RZ2, R4 and R6 were learned faster than R1l, R3 and
R5. This finding agrees with the prediction made from the l-memory store
model, It is not the case however, that the only difference between the
even and odd responses is the one that led to our prediction. The
correct response for Rl contains two components (I,N}, and one of the
correct responses for R3 also has &wo components (I,N), But the even
responses have only one correct recponse (T,W or D), There may be
some thing which céused subjects to be less ready to respond with two
letters than with one, R5, however, did not meet this difficulty. Both
correct responses are only a single letter (I or N), and R5 was learned
more slowly than any of the even responses. This built-in control thus
helped us decide that the difference beiween the even and odd responses
was due to the even responses being learned in such a way that trials
with different pasts contributed to learning. In other words, the
Equations (2) in Section Ii are more czorrect than the Equations (1),

However, there is an even more direct way to test this, as we
showed in Section II, and that is tec look at whether, say, T was learned
independently on trials with different histories. Figure 11 shows the

learning curves for Groups S and S for RZ, R4 and R6 for the first 10
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trials, (After 10 trials opr these responses there were relatively few
errors.,) The abscissa is trial number, and the ordinate is proportion
of errors, The trials on which 81 = I (that is, the first word
presented is 1), are plotted by x’s. These are trial numbers 1,4,7,
The other ;rials are plotted by dots. Now, if the responses for the
two kinds of trials were learned independently, the learning curve would
not be a monotonically decreasing curve., Rather, points 4 and 7 would
jump way up. In fact, if we assume that the learning rates were equal
for the two kinds of trials, the trial~4 point would jump up to the
trial-3 point, and the trial-7 point would jump up to the trial-5 point
(assuming no interference). On the other hand, if all the trials (i.e.,
both kinds) count equally toward the learning of the response (i.e., if
we assume that all the trials form a sequence of learning trials on the
same response), then we should obtain a monotonically decreasing learning
curve of the usual kind, with trials 1,4 and 7 falling into place, The
curves plotted in Figure 11 show that this latter result is the case,
The S1 = I trials appear as they would if the ten trials were a learning
sequence on one response,

As a comparison, in Figure 12 the learning curves for the first 10

trials for R3 and R5 are plotted. For R3, the x’s are trials on which

. - - . - - O

O o W -0 o - S~ . A —— -~

51 = I and dots are trials on which S81 = N, It is clear that the curve
here is not monotonic, rather the x points are much lower than the dots.

In the R5 curve, the x’s are trials on which either 81 = I or 82 = I, and
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the dots are trials on which 85 = I. Here it is also clear that the
curve is not monotonic, the x's representing fewer errors. We may
conclude that R2, R4 and R6 were not learned independently on the
different kinds of trials.

Semantics Learning. Figure 13 shows the learning curve for the

number (answer) responses for Group S. (Group S had no such answers.,)

There are two curves, one for the 24 subjects who learned R3 and one for
the 10 subjects who did not learn R3. 1If can be seen that the subjects
who learned R3 learned the numbers faster than the subjects who did not
learn, but there is no way to tell from this data whether subjects
learned the numbers slower, because they did not leara R3 or whether
they were slower learners and thus learned both R3 and the numbers
slower., However, we have already reported data showing that the non-
learners learned the Part II responses slower than did the learnmers.
Thus a general difference in learning ability is probably at least part
of the explanation for the difference here.

Both groups of subjects approached an asympfote of no errors. 8o
this simple semantic system can be learned quite readily. Since this
system is somewhat simpler than the syntactic system -discussed earlier,
let us look at some of the properties of learning the system, A simple
one-element model will not work because inspection of the data reveals
that there were more errors on the first few trials, even when trials
after the last error were excluded. However, another possibility

suggests itself, Many of the responses were wrong because they are sums
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of the two numbers in the sentence when they should be differences or
vice versa, We assume that at first the subject did not even respond
with sums or differences. In this state the subject answered randomly
or made no response at all, We can assume one-element learning to take
the subject into state SD, where he mostly responed with an answer which
is the sum or difference of the two numbers, but whether the answer is

a sum or difference does not depend on the stimulus sentence. 1In this
state we can assume one-element learning of which kind of sentence means
Wsum" and which means "difference.™ When the subject learned this he
responded correctly on all trials,

These assumptions can be made more precise by writing the Markov.
chain transition matrix and the vector of state response probabilities.
The response probability Pr(8D) A is the probability of making &
response which is the sum or difference of the numbers presented in the

stimulus sentence. The matrix and probability vector are

Trial n + 1 Pz (SD)
L SD U
L 1 0 0 1
Trial ) d 1-d 0 p
n
U 0 c i-c 0

We assumed that in the unlearned state the probability of a subject's
making a sum or difference response is 0 even though it might be a little
higher than that because when the subject guessed a numeral he might

have guessed such a response, However, the probability is quite a bit
smaller than 2/10 (there were 10 possible answers, as the subject knew)
because many responses in the early part of the response protocols were

blank.
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It is important to realize that this theory does rot distinguish
between the two kinds of sentences, i.e., Sum (S) sentences, where the
sum of the numbers is correct and Difference (D) sentences, where the
difference of the two numbers is correct.

The transition matrix is the same as for some cases of the two-
element model (e.g., Bower and Theois, 1964)., We attempted to estimate
parameters for the above model by applying the methods of Greeno (1968),
This analysis was more appropriate than other analyses because it allowed
subjects to start in a state other than the unlearned state. Since some
subjects were correct on the first trial this was necessary. Greeno's
Case 2 analysis was applied, which was the natuial one for our data, The
theory was applied to the 24 subjects who learnad R3, using Greeno's
matched-statistics estimates for parameters. Howéver, ne matter what
identifying restriction was assumed (i.e., learning on correct or error
trials out of the intermediate state is equivalent, or there are no
transitions to the learned state from the unlearned state), the estimates
were not acceptable, some of them either being negative or greater than
one, The problem is that we have too little data for making reliable
estimates of statistics, there being only 24 learning sequences, For
example, an important statistic in the estimation method is the number
of errors before the first correct response made by subjects who made no
wrrors after the first correct response, However, there were only four
such subjects in our data, and thus, the estimate could net be considered
reliable, Since these methods just did not work, there is ne reason to
analyze them further. If we were interested primarily in this question,
an experiment could be arranged which would allow a better test of the

model,
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One prediction from such a model is the following. If in the unlearned
state the subject never makes a sum or difference response, and if in the
intermediate state he makes such a response with constant probability,
then the plot of proportion of errors versus trials after the first sum
or difference response, for responses before the last error, should be

horizontal, Figure 14 shows this plot. It looks roughly flat, though

premgrtegpuniuaiiend g S S T i et gy

we have left out trials at the end where there were only a few subjects.
x? (between theory and data) = 3,04, 4df, p > .50, A t test of the
difference between the number of errors in the first half and second
half of a subject's protocol (responses after first correct and before
last error) is significant (t = 2.14, 23 df, p < .05), more errors
occurring in the second half. However, the significance is due to a
small variance, the mean numbers of errors for the two halves differing
by less than 1.

The model makes another prediction, a prediction which relates
specifically to the difference and smmn sentences. Let Pr(8/D) be the
probability of giving a sum response to a difference sentance, and
define the other three probabilities likewise, Then the model predicts
that in State SD, Pr(S/D) = Pr(D/D) and Pr(S/S) = Pr(D/S). Once again
we look at trials on which we know subjects were in state SD, those
after the first sum or difference response and before the last error,

Table 9 shows the above probabilities for these trials. We see that the

- o Ty - —— - e = = o= e -

o e e e
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TABLE 9

Probability of Giving a Sum or Difference Response
to a Sum or Difference Sentence. Only Trials after

the First Sum or Difference Response and before the
Last Error are Included.

Response
Sum Difference
S Sum «53 06
Stimulus
Sentence
Diffeience «35 «37

_92_



O

ERIC

Aruitoxt provided by Eic:

model is wrong in this prediction. The subjects are much more likely to
give a difference response to a difference sentence than to a sum
sentence. Somehow the subjects have some knowledge about sum sentences
and do not give difference responses to them.

Part IV - Grammaticality Learning

There can be two kinds of errors in Part 1V, either a 1 response
where a 0 was correct (i.e,, calling the sentence grammatical when it
was ungrammatical) or a 0 where a 1 was correct (calling the sentence
ungrammatical when it was grammatical), For now we consider both kinds

together and simply call them errors, Figure 15 shows the learning

0 - - - - —— -

- oy T -0 -

curves for Part IV for the 50 subjects who learned R3 and for the 23
subjects who did not learn R3. Excluded from the curve is trial number
16, because the reading of the sentence was garbled., The number of
errors for this response was higher than for the responses adjacent to
it, but this was doubtless due to the lack of clarity of the sentence,
For each trial, whether the sentence was grammatical (1) or ungrammatical
(0) is indicated at the bottom of the figure. Asterisks indicate the
four special ungrammatical sentences in which sentence words were inter=-
changed.

First we see that, as a group, subjects who learned R3 also learned
Part IV, The mean number of errors per subject per trial over the last
6 trials is ,03. If the subjects guessed 0 or 1 with probability % each,
the mean would be .50. Did the subjects start Part IV always being
correct? Since they had learned R3 by definition (that is, by selection
of subjects) and since, according to the results discussed for Part III,
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they also learned Rl and R5, it is possible that they could have done
perfectly on Part IV from the start. That is, because the response rule
for R1l, R3, and R5 could have been coded as "the stimulus is always an

I or N, and there is exactly one I," the subjects might have used this
to respond correctly on Part IV,

But it is clear that the subjects did not start out by almost always
being correct. The proportion of errors on trial 1l was only ,08, but on
trial 2 it shot up to 0.44, Note that on trial 1 a grammatical sentence
was presented but on trial 2 an ungrammatical sentence was the stimulus,
Since the proportion of errors on trial 1 is only .08, it seems clear
that subjects did not guess 0 and 1 each with probability %. But could
they be simply guessing 1 with probability close to 1?7 No, because then
the proportion of errors on trial 2 would be close to 1, imnstead of .44.

The question is, do subjects recognize at first that a sentence with
"ikutsu" appearing twice (i.e., an ungrammatical sentence) is different
from one that has only one "ikutsu?® If they did not distinguish
between them, the proportion of errors on trials 1 and 2 would not be
different (i.e., if the subjects were guessing independently of the
stimulus sentence, no matter what the guessing probability, the expected
proportions of errors on the two trials would be the same. This assumes,
of course, that no learning occurs between the first and second trials,
But there seems no reason to suppose that learning to distinguish
between a G sentence and a U sentence would occur as the result of one
exposure to a G sentence. And if learning did occur, the proportion of
errors for trial 2 would be lower than for trial 1, not higher, which

was the actual result). Therefore, it seems likely that from the start
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subjects discriminated the ungrammatical from the grammatical sentences,
but had to learn how to respond to them,
Bearing these results in mind, let us look at the results for the

3 subjects who did not learn R3., Table 10 shows the mean number of

errors per subject for both groups (i.e., those who learned or did not
learn R3). The number of errors is greater for the group that did not
learn R3 than for the group that did learn. This is a result we would
expect, since if a subject did not learn R3 we might assume he had not
learned that an I could not appear twice. But suppose we assume that
the subject had learned nothing about this, Once again this woﬁld lead
us to predict that the proportions of errors for trials 1 and 2 would
be the same, Figure 15, however, shows this is not the case; the
proportions are .09 and .57, respectively. These proportions are not
way out of line with the proportions for subjects who learned R3. The
best explanation for this result seems to be that even subjects who did
not learn R3 by our definition learned the structure of the syntax, i.e.,
that I appeared exactly once, Remember that many of the subjects in
this group had never used two responses in a box, i.e,, they had not
followed directions, Also, only three subjects had locked into an R3
response of N,I, What seems to have happened then is that even most of
the 23 subjects in this group learned the structure or something about
the structure, which leads to the different proportions between trials
1 and 2.

Table 11 shows the number of subjects in each group who made at

least one error on the last 6 trials., Consistent with the results we



TABLE 10

Mean Number of Errors in Part 1V,
Grammaticality Judgments,

— - — Total

SW Sw SA S S
Learned R3 4,8 2,8 2.9 3.4 6.5
Did Not Learn
R3 13.8 4,0 18.5 14,5 10.3

.97



TABLE 11

Proportion of Subjects who Made at Least One Error
on Last 6 Items of Part IV, Grammatical Judgments.

S B Total
Learned R3 17 04 .10
Did Not Learn
R3 .30 .62 .48
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have already discussed, the subjects who did not learn R3 had proportionately
higher scores on this statistic than subjects who did learn. In fact, 11 of
the 23 non-learning subjects made at least one error on the last 6 trials,

It is possible that some subjects who did not learn R3 because of lack of
ability or motivation had the same effect on Part IV. This is substantiated
by the fact that these subjects also did less well on Part II.

Now let us turn to the four special ungrammatical sentences. We can
read the proportion of errors for each from Figure 15, The first of these
sentences was presented on trial 9 and read "ikutsu desuka 1 wa 3 tasu."

In other words, "tasu" and "desuka'" were interchanged. Considering the
50 subjects who learned R3, only a proportion of .02 of them called this
sentence grammatical, The second of these sentences appeared on trial 17
and read "0 5 tasu wa ikutsu desuka." 1In other words, "tasu" and "5" were
interchanged, The proportion of errors was .38, This proportion was much
higher than the proportion for the trial immediately preceding and
following it., The third sentence was number 30 and was supposed to have
read "2 ikutsu tasu wa 3 desuka."™ In other words, "ikutsu" and "tasu"
were interchanged. However, the speaker made an error and instead of
saying "tasu" he said something that sounded like "des." 1In other words,
a new word was introduced to the subjects., The proportion calling this
sentence grammatical was only .10, However, this proportion was doubtless
low because of the introduction of the new word, so we will not consider
this sentence, The fourth sentence was number 42 and read "ikutsu wa 2
tasu &4 desuka." Here "wa" and "tasu" were interchanged. The proportion
of subjects responding 1 {(grammatical) was .44, Once again, this
proportion was much larger than for the sentences immediately preceding

Q and following it.
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The question that strikes us is, why is the proportion of errors so

much higher for sentences 17 and 42 (.38 and .44) than for sentence 9
(.02)? Two explanations suggest themselves, First, consider the "word
distance" between the two words interchanged to make the ungrammatical
sentence from a grammatical sentence. This is 1 plus the number cf
words between the two words in the grammatical sentence. This measure
for the three sentences iss for sentence 9 the distance is 4, for
sentence 7 the distance is 1, and for sentence 42 the distance is 2,
So it is a question of distance 4 on the one hand versus distances 1
and 2 on the other., It might be that this distance is a good measure
of sentence grammaticality, The greater the distance the more chance
the sentence will be called ungrammatical,

However, another possibility is that sentence 9 was heard as
ungrammatical because it put "desuka' out of place. ‘M"Desuka' is the
last word of every sentence and signals the subject that the sentence
is over. When it did not appear there, but tasu appeared in its place,
this was probably very salient to the subject. As we saw previously,
"desuka" (R6) was the response learned quickest in Part III. This was
doubtless not because of the properties of the word, but because it
appeared last,

There is no way to distinguish in this experiment between these two
possibilities. An experiment could be done varying this "word distance"
and having subjects judge grammaticality. However, there does seem to
be one solid conclusion from the results, That is that subjects make many
more errors in this part on the few sentences which interchange function

words than on the sentences which include "ikutsu" twice., Whether this
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is due to more practice on the latter or to some other reason is not
clear.o

In summary, Part IV mainly confirmed our belief that on Part I1I,
subjects learned the 1anguage J. It has also provided evidence that
some subjects who did not learn R3 by our definition did indeed learn

the langnage J,
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Vi, Discussion and Summary

The major point of our study was to try to decide what kind of
automaton best represents a subject's behavior in the experiment. First,
we noted that if the subject became an ordered-state finite automaton,
he would not learn the syntax of J. The results presented in the last
section show that most of the subjects who followed the instructions
learned, and that of those who did not, only three behaved at asymptote
in the way a sequential finite automaton such as o might predict, Also,
the results of Part IV of the experiment suggested &hat even the nine
subjects who did not learn R3 by our criteria learned much of the
structure of J. We may safely conclude that, in general, subjects did
not behave as if they became ordered-state finite automata,

We predicted that if subjects became either general finite automata
or ordered~-state l-memory store automata, then they would learn, as they
could become either }; or .72, However, we noted a way to distinguish
between these two automata. By making a general assumption about the
course of learning on finite automata and 1-MS automata, we could write
equations (1) in Section II for /Z and equations (2) for A The equa~
tions for the finite automaton fﬂ predict that R2 is learned at the same
rate as R1l, while the equations for A predict that R2 is learned faster
than Rl., By the same reasoning that produced these equations, we can
derive similar equations which predict for }l that R4 is lesrned at the
same rate as Rl and for /ﬁ that R4 is learned faster, From both /@
and /7 we predict that R6 is learned faster than Rl, The difference
between R2 and R6 here is that in %c the pair (sg,D) appears on every

4
trial, It is clear that we cannot write a finite automaton that will
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behave like R6 for all responses, includiug R2 and R4, since then we would
have an ordered~-state finite automaton, and we saw in Section II that no
ordered-state finite automaton can respond correctly to Jo.

Now, the above predictions are made with respect to Ri, But by
exactly the same reasoning, we see that )Z predicts that R3 and R5 are
learned at the same rate as R2 and R4, while S prec ‘cts that R2 and R4
are learned faster., Both automata predict that R6 is learned faster than
R3 or R5, In short, }Z predicts that Rl through R5 are learned at the
same rate, while 4& predicts that the even responses (R2,R4) are learned
faster than the odd responses.

We saw in the last section that, in fact, no matter what statistic
we looked at, all the even responses were learned faster than the odd
responses, and this result even held across the four sub-groups. These
results make it clear that the predictions from /7 are much closer to
the experimental data than are the predictions from ﬂﬂo In this
experiment, ét least, subjects behaved more like a 1-MS than like a
finite automaton.

An alternative explanation of our results might be proposed. This
is that, for some reason, it is difficult for the subject to learn those
responses where a two-letter response is correct., This would explain
why R1 and R3 were learned slowly compared with the even responses, but
it would not explain why R5 was learned more slowly than the even responses,
because the correct responses for R5 contained one letter (N or I depending
on the history). This built-in control rules out the two-letter
explanation,

Also, note that the usual serial position effect could not explain
our results, The results do not at all fit a bowed serial position curve

~.303 -
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(where the serial position is Rl through R6). 1In fact, an error curve
through thc results {as well as predictions) changes its direction (i.e.,
the sign of the first derivative) at every point. For example, there

are more errofs for R3 than for R2.or R4, and this could uot occur in a
bowed - .1al positiom curve,

In addition to the above predictions, as we saw in Section II, our
learning assumption together with predicts that each kind of trial
is the same. Specifically, )2 predicts that the learning curve over all
the trials should be monotonically decreasing, but that the points for
one of the kinds of trials should come up. We saw in the last section
that the curves were monotonically decreasing for both even responses.
Once again, the 1-MS /? is more appropriate for the data.

We also wanted to look at the effects of semantics practice on the
learning of syntax. The hypothesis that semantics acts as a motivator
only predicts that the semantics group would do better than the non-
semantics group on all the responses, The hypothesis that semantic
structure restricts the range of possible syntactic structures predicts
that, since this restriction only affects R3 and R5 (since these responses
are the only ones affected by the history of the sequence), the semantics
group would do better on these responses, but there would be no difference
on the other responses between the two groups,

The results show that indeed there’was no difference on mean trial
of last error between the two groups on Rl, R2, R4 and R6, as fhe
restriction hypothesis suggests, and that the semantics group did better
on R5, again as the restriction hypothesis suggests, On the other hand,

R3 was not significantly better for the semantics group. However, the
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mean was smaller for the semantics group on R3, and this was the only
response besides R5 for which this was true. At any rate, since R5 was
the one response for which the semantics group did significantly better,
these results, though less conclusive than our results on the syntax
learning, suggest that the restriction hypothesis predicts the data
better than does the motivation hypothesis,

We also saw that the semantics system {(correct number responses)
was learned by the subjects. There was some evidence that before the
subjects were in a state in which they always answered correctly, they
were guessing numbers which were sums or differences of the two numbers
presented in the sentence,

Do our results suggest anything about language learning in general?
It is of some interest that a finite automaton did not turn out to be an
appropriate representation for the subject in our experiment, Of course,
the language we dealt with was a finite language so that it is not a
question of generative capacity. Our 1-MS is much weaker than the
general PDS automata. On the other hand, a crucial part of the PDS
structure remains in our version and distinguishes it from finite
automata. This structure is that there is memory besides the state of
the automaton, Perhaps our experimental results are generalizable to
more complex languages, including languages with loops, which we have
not considered at all in this study,

Our results on semantics suggest that studies of syntax learning
that do not include a semantic model may be losing an important
component of syntax learning. The results seem to suggest that semantics

acts as more than a motivator,
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In general, we feel that the value of our study lies in the fact
that it provided experimental evidence for the kind of automaton a
person cauld become., Thc predictions from the automata included both
predictions about whether a person who became a given kind of automaton
could learn a given language, and also predictions about how a language
would be learned. These predictions allowed us to distinguish between
various kinds of automata, Perﬁaps future work on more complex

languages will confirm our results,
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Appendix I. Transformational Rules for Arithmetic

Our purpcse is to lisi the transformational rules for a subset of
spoken arithmetic in English and Japanese, We do not give any discussion
of the rules. OQur goal is mainly to show that spoken arithmetic can be
generated by a miniaturg linguistic model having the properties of the
model discussed in Section III.

Notation is the standard linguistic one. All transformations
(except the lexical ones) are described by an analysis, which is a cut
of the phrase-marker of a sentence, and a permutaticon of that analysis,
For each transformation, we call the analysis A and the permutation P,
When we write BLOCK, it is the same as writing the empty string, but we
do it this way for graphic purposes. The transformations are ordered
and, except for those labelled otherwise, are obligatory. The trans-
formations apply to the base in Table 1,

The BLOCK transformations are used to delete strings that do not
have the proper number of x's (variables) for the given sentence., This
is related to the discussion of base strings whose meaning is empty in
Section III. However, some strings are deleted whose meaning is not
empty, namely, strings with more than one variable, since there is no
natural way of asking such questions in the spoken language, especially
when the two variables are not adjacent.

In the rules, capital letters X,Y,Z are variebles taking strings as
arguments., When such a letter appears, any string can be inserted.

Small x is the variable in arithmetic.
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Evclish Transformations

A, Lexicon
0 = zero

1 - one

2 = two

3 = three
4 - four
5

- five

u
1

equal

4+ - plus

~ = minus

°* - times

/ = divided by
(-9

) = ¢

B. Sentence Transformations

1. T A= X,x,Y,%,2
BL1 P=122345 - BLOCK
2, TQWhl A= Qwh,X,x,Y,=,Z
P= 123456 - 2 what 4 is 6
3, TQW A= QK=Y x,2
h2  p. 123456 ~ 2 is 4 what 6
4o Tp1o A= QX
P= 12 - BLOCK
5. T A= X,X,Y
BL3 P=123 - BLOCK
6. TQYN A = QusX,=,Y
P = 1234 - Does 2 3 4
7. T, A= C,(,N,+,N,)
P=123456 ~ Add 3 and 5
8, TCS A= Ca(aNs’,Na)
P=123456 — Subtract 5 from 3
9. Tgy A= C,(,N,0,N,)
P=123456 ~ Multiply 3 by 5
0. Ty A= C,(,N,/,N,)
P=123656 - Divide 3 by 5
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Japanese Transformations '

A. Lexicon

0 =~ zero
1 ~ ichi
2 = ni

3 = san
4 = shi
5 - go

= = wa
+ -~ tasu *
- =~ hiku
. = karu
/ =~ waru
( -9

) -9

B. Sentence Transformations

i. T A= X,x,Y,x,Z
BL1 P=12345 -~ BLOCK
‘/- \\
2. T A=Q.,N%.,/,N,=,N Al \ ’o\
Qeni et/ kar JAR
P= 12 3 456- 12 ./4\ 3 to 6
ni 0
0] \de
3. T A= +Xyx,Y
Qn2 Qh ,
P = 1234 ~ 2 ikutsu 4 desuka
be Ty, A=Q,,X
P= 12 - BLOCK
5. T A= X,x,Y
BL3 P=123 - BLOCK
6. Tyy A= QX
= 2 -
P 1 /+\ 2 desuka
7. T, A = C,(,N, \// N,) Eir‘a
P=123 4 56 = 3( ¢ & 4 te kudasai
0

In this last transformation we have ignored a morphophonemic rule that
takes, for example, tasu + te - tashite.
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Appendix II. Experimental Instructions for Part III, Group S

Part III will probably be more difficult than the other parts, The
instructions are somewhat complex, so listen carefully. You are going
to learn some simple Japanese sentences. Each sentence contains six
words. You are already familiar with all the words, They are all either
the four words you became familiar with in Part I or they are the numbers
you learned in Part II. Your first job is to learn to predict what the
order of words is in each senténceo You will hear a tone {or a bleep)
on the television. Then you wili write the letters for what you think
the first words can be in the first box. If you think the word will be
one of the four words you learned in Part I, write the first letter of
that word, for example, T for tasu. However, if you think the word will
be one of the numbers you learned, write N for number. Remember, do not
write the first letter of a particular number, rather write N for number,
In some sentences, in some positions, it is possible that more than une
word could occup; that position, In fact, sometimes two words could
possibly occupy a position.- If yeu think only one word can occupy a
position, write the letter for that word before the comma in the box.
If you think two words could occupy the position, write both words, one
before and one after the comma., Remember, in some sentences, in some
positions only one word would be correct, and in some positions two words
would be correct. 8o do not always fill the space after the comma
because sometimes only one would be correct, The patterns are such that
sometimes a preceding word can influence what words can later follow,
So do not write all six answers at one time. Always fill in just one box,

then wait for the next word to be spoken, You have a few seconds to make
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your prediction., Then the actual word of the sentence will be said by
the speaker, This may be only one of the possible words that might
appear at that positioﬁ. If you predicted this word you were correct.
If you predicted another word you might have been correct. Since at
most two words could have come in that position, if you predicted two
words and neither was said by the speaker, at least one of them was
wrong,

After you hear the first word of the sentence there will be a few
seconds' pause and you will then predict the second word of the sentence,
Then the third word will come, and so on, for the six words, Please do
not write any answers after you have heard the correct word, We have to
trust you, and it is very important to us to get your answers befoue
you have actually heard the correct answer, Look at your answer sheets,
Each row is for one sentence, The row of six boxes is for the six
predictions of the words in the sentences., The comma is there so that
you may predict two words if you wish, Please predict only words that
you feel might be correct. If you have some feeling that they are
correct, write them, But do not make completely wild guesses, If you
do not know any word you want to predict, put a dash in the bog and
write the next answer in the next box. Are there any questions about
this part of the procedure?

There is one thing more to this part. Please listen carefully,
Each of these sentences is an actual Japanese sentence, And each one is
a sentence asking a question in arithmetic., The questions are about
addition, In algebra the questions they ask wculd be expressed by the
equations, for example, "1 plus 3 equals x," "1 plus x equals 3," and

"x plus 1 equals 3," That is, the required answer is the value of x.
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These are the only sentences you will be hearing. In English, the
questions would be, perhaps, "1 plus 3 equals what," "1 plus what equals
3," and "what plus 1l equals 37" Ncte that the answer to, say, "1 plus
what equals 3" is "2" whereas the answer to "] plus 3 equals what" is
"4," That is, the answers are different., It is also your job in this
part to learn the meaning of these Japanese sentences, that is, to learn
what questions the sentences are asking. Remember, the sentences all
have the meaning of one of the 3 algebraic equations I mentioned before.
After you have heard the six words of each sentence repeated slowly,

and you have made your predictions, you will hear the same sentence,
repeated at a more natural speed, Then you have a few seconds to write
the answer to that scentence in the box to the right of the six boxes

and separated from it, Then the numerical answer will appear on the
screen, For example, if you think the sentence asked the question (in
Japanese), "x plus 1 equals 3," the number 2 will appear. If the
question is "1 plus 3 equals x," the number 4 will appear. Once again,
please do not write any answers after you have seen the correct answer,
If you do not know an answer put a dash in the box. Do not try to write
the Japanese number for these answers. Simply write the digit. The
answers are any number from O to 9, After the numerical answer appears
on the screen, a tone will once again be heard. This is your signal to

predict the first word of the next sentence. Are there any questions?
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